$$
\begin{equation*}
x^{2}+(m x)^{2}-6 x-2 m x+5=0 \tag{I}
\end{equation*}
$$

$\left(1+m^{2}\right) x^{2}-(6+2 m) x+5=0$
$(6+2 m)^{2}-20\left(1+m^{2}\right) \quad(\geq 0)$
$\Delta=-16 m^{2}+24 m+16 \quad(\geq 0)$
Roots of $-16 m^{2}+24 m+16=0$ are $m=2$ and $m=-\frac{1}{2}$
Range for real solutions is $-\frac{1}{2} \leq m \leq 2$

Question		Answer	Marks	AO	Guidance
7	(b)	$m=2 \Rightarrow x^{2}+4 x^{2}-6 x-4 x+5=0 \quad\left(\Rightarrow 5 x^{2}-10 x+5=0\right)$ $x=1, \&$ repeated root or only one root oe or $x=1, x=1$ NB May be implied by next line. Line is a tangent	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	1.1 2.1	Substitute $m=2$ into their (I) or substitute $y=2 x$ into $x^{2}+y^{2}-6 x-2 y+5=0$ or "Only one intersection point" oe dep M1 only
		Alternative method 1 $m=2$ gives $\Delta=-16 \times 2^{2}+24 \times 2+16$ $=0$. hence repeated root or only one root oe NB May be implied by next line. Line is a tangent	$\begin{array}{r} \text { M1 } \\ \text { A1 } \\ \mathbf{A 1} \\ \hline \end{array}$		Substitute $m=2$ into their Δ or "Only one intersection point" oe
		Alternative method 2 Attempt draw circle centre $(3,1)$ and line through O Approximately correct diagram showing line touching circle State "Tangent" or "Only one intersection point" oe	$\begin{array}{r} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$		NB Question allows for diagrammatic solution. Dep M1A1
			[3]		.

