Question		Answer	Mark	AO	Guidance
1	(a)	LHS = $\cos x + \sin x \times \frac{\sin x}{\cos x}$	M1*	1.1a	Use of $tan = sin/cos$
		$= \frac{\cos^2 x + \sin^2 x}{\cos x}$	dM1	1.1	Attempt common denominator (by multiplying numerator) OR apply $\sin^2 x + \cos^2 x \equiv 1$ in correct working to reach $\cos x + \frac{1-\cos^2 x}{\cos x}$ oe
		$=\frac{1}{\cos x}$ AG	A1	2.2a	www, Must see previous line and answer
			[3]		
1	(b)	$\tan^2 x = \frac{1}{2}$	M1	1.1a	or $3\sin^2 x = 1$ or $2 = 3\cos^2 x$ and attempt to solve
		$\tan x = \pm \frac{1}{\sqrt{2}}$			$\sin x = \pm \frac{1}{\sqrt{3}} \qquad \qquad \cos x = \pm \frac{\sqrt{2}}{\sqrt{3}}$
		$x = 35.3^{\circ} \text{ or } x = 145^{\circ}$ (Both)	A1	1.1	(35.26°, 144.7°) A0 if any additional solutions within range (isw any outside)
			[2]		