
| Question |     |     | Answer                                                                                                                                                 | Mark      | AO  | Guidance                                                                                                                |
|----------|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------------------------------------------------------------------------------------------------------------------------|
| 2        | (a) | (i) | $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 6 \end{pmatrix} - \begin{pmatrix} -4 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ | <b>M1</b> | 1.1 | One of these. Attempt $\mathbf{b} - \mathbf{a}$ or $\mathbf{c} - \mathbf{b}$ or similar                                 |
|          |     |     | $\overrightarrow{BC} = \begin{pmatrix} -1\\12 \end{pmatrix} - \begin{pmatrix} -3\\6 \end{pmatrix} \text{ or } \begin{pmatrix} 2\\6 \end{pmatrix}$      |           |     |                                                                                                                         |
|          |     |     | $\overrightarrow{BC} = 2 \overrightarrow{AB}$ or $\overrightarrow{BC}$ is a multiple of $\overrightarrow{AB}$<br>Hence <i>B</i> lies on <i>AC</i>      | A1        | 2.1 | Dep correct $\overrightarrow{AB}$ and $\overrightarrow{BC}$<br>Multiple (2) not required, but if given must be correct. |
|          |     |     | Alternative method 1:                                                                                                                                  |           |     |                                                                                                                         |
|          |     |     | $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 6 \end{pmatrix} - \begin{pmatrix} -4 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ | M1        |     | One of these. Attempt $\mathbf{b} - \mathbf{a}$ and $\mathbf{c} - \mathbf{a}$ or similar                                |

|   |            |      | $\overrightarrow{AC} = \begin{pmatrix} -1 \\ 12 \end{pmatrix} - \begin{pmatrix} -4 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} 3 \\ 9 \end{pmatrix}$ $\overrightarrow{AC} = 3 \overrightarrow{AB}  \text{ or } \overrightarrow{AC} \text{ is a multiple of } \overrightarrow{AB}$ Hence <i>B</i> lies on <i>AC</i> | A1        |              | Dep correct $\overrightarrow{AB}$ and $\overrightarrow{AC}$<br>Multiple (3) not required, but if given must be correct.                                                                                                                                                                                                          |
|---|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |            |      | Alternative method 2:<br>Gradient of line AC is $m = 3$<br>Equation of line AC is<br>y - (3) = 3(x - (-4))<br>(y = 3x + 15)                                                                                                                                                                                           | M1        |              | Find (gradient and) equation of line <i>AC</i> – need not be simplified                                                                                                                                                                                                                                                          |
|   |            |      | At $x = -3$ , $y = 3(-3) + 15 = 6$ (i.e. <i>B</i> )<br>Hence <i>B</i> lies on <i>AC</i>                                                                                                                                                                                                                               | A1        |              | Substituting in <i>x</i> -coordinate of $B$ (or both $x, y$ ) to show consistent Dep on correct equation                                                                                                                                                                                                                         |
|   |            |      | Alternative method 3:<br>Gradient of line <i>AB</i> is 3<br>AND Gradient of line <i>BC</i> is 3                                                                                                                                                                                                                       | M1        |              | Must both be explicitly stated for this method.                                                                                                                                                                                                                                                                                  |
|   |            |      | As <i>B</i> lies on both <i>AB</i> and <i>BC</i> , and <i>AB</i> and <i>BC</i> have the same gradient, <i>B</i> lies on <i>AC</i> .<br>(OR therefore $A, B, C$ are colinear)                                                                                                                                          | A1        |              | Must make a convincing argument (not just conclude directly from two gradients) www.                                                                                                                                                                                                                                             |
|   |            |      |                                                                                                                                                                                                                                                                                                                       | [2]       |              |                                                                                                                                                                                                                                                                                                                                  |
| 2 | (a)        | (ii) | AB:BC=1:2                                                                                                                                                                                                                                                                                                             | B1<br>[1] | 1.1          | Must be a ratio (but may be equivalent e.g. 2 : 4)                                                                                                                                                                                                                                                                               |
| 2 | <b>(b)</b> |      | Q marked at (4, 2) or (4, 2) stated                                                                                                                                                                                                                                                                                   | <b>B1</b> | <b>3.1</b> a | May be implied by correct magnitude or direction                                                                                                                                                                                                                                                                                 |
|   |            |      | Magnitude = $2\sqrt{2}$ or $\sqrt{8}$ or 2.83 (3 sf)                                                                                                                                                                                                                                                                  | <b>B1</b> | 1.1          |                                                                                                                                                                                                                                                                                                                                  |
|   |            |      | Direction = $-45^{\circ}$ or $315^{\circ}$                                                                                                                                                                                                                                                                            | B1        | 1.1          | Accept any unambiguous indication of the direction of $\overrightarrow{PQ}$ e.g.<br>"towards the x-axis along $x + y = 6$ " OR an arrow on diagram<br>OR stating direction together with the column vector $\overrightarrow{PQ} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$<br>Condone 135° as a bearing (but must state "bearing") |
|   |            |      |                                                                                                                                                                                                                                                                                                                       | [3]       |              |                                                                                                                                                                                                                                                                                                                                  |

