| Question | | Answer | Answer | | AO | Guidance | |----------|--|--|--|-----------------|------|--| | 5 | | | | | | DR | | | | $x(x^2-4)=0$ | | B1 | 3.1a | Evidence of factorising or otherwise attempting to solve (=0 not required for this mark) | | | | x = 0, -2, 2 | | B1 | 1.1 | This mark may be implied by correct limits | | | | $A_1 = \int_0^2 \left(x^3 - 4x \right) \mathrm{d}x$ | x | M1* | 1.1 | Ignore limits for this mark | | | | $x(x^{2} - 4) = 0$ $x = 0, -2, 2$ $A_{1} = \int_{0}^{2} (x^{3} - 4x) dx$ $= \left[\frac{x^{4}}{4} - 2x^{2} \right]_{0}^{2} = 0$ | -4 | A1 | 1.1 | Must be seen for this mark (or clear indication of taking modulus)
Condone area from [0,-2] as -4 or from [2,0] as +4 but must be
consistent with their limits | | | | $A_2 = A_1 = 4$ or | $A_2 = -A_1 = 4$ | dM1 | 2.1 | By symmetry: Total area = $2 \times$ (their A_1) or adding together two areas of the same sign from their two integrals (or just $4 + 4$) | | | | Total area = 8 | | A1 | 1.1 | www, Area must be positive | | | | M1*A1dM1A1 | Alternative method for final M1*A1dM1A1 $\int_{-2}^{0} (x^3 - 4x) dx - \int_{0}^{2} (x^3 - 4x) dx$ | | | Ignore limits for this mark | | | | = 4 - (-4)
= 8 | | A1
dM1
A1 | | Correct area of -4 seen Attempt combine the two areas, with correct signs www, Area must be positive | | | | | | | | NB $\int_{-2}^{2} (x^3 - 4x) dx = 0$ scores B1B1M1A0M0A0 if working seen SC, no working or inadequate working: | | | | | | [6] | | One area = 4: SCB3 or Total area = 8: SCB4 |