Question		Answer	Mark	AO	Guidance
6	(a)	$x^3 = -1$ or $\frac{1}{8}$	M1	1.1	For attempting to solve as a quadratic in x^3 (May be implied by these correct answers for x^3)
		x = -1	A1	1.1	(Must be explicitly, separately, stated following $x^3 = -1$)
		1			Some working must be seen
		or $x = \frac{1}{2}$	AI	1.1	Answers only (no working or inadequate working) SCB1 for each (max 2/3)
			[3]		
6	(b)	$\frac{dy}{dy} = 56r^6 + 49r^3 - 7$	M1	3.1a	Attempt differentiate, at least two terms correct
U	(0)	$\frac{dx}{dx} = 50x + 49x = 7$	A1	1.1	All correct
					Setting their $\frac{dy}{dr} = 0$ and attempting to solve (must show attempt
		$56x^{0} + 49x^{3} - 7 = 0$	M1	M1 1.1	at solving the quadratic in x^3 or reach $x=$ from part (a))
					Must see =0 here (may be implied by fully correct solutions only)
		$(8x^6 + 7x^3 - 1 = 0, x = -1 \text{ or } x = \frac{1}{2})$			
		SPs are $(-1, 11.25)$ and $(0.5, -\frac{171}{64})$	A1	1.1	(Accept 11.3 or $\frac{45}{4}$)
		or (0.5, -2.67) (3sf)	5.43		Coordinates must be correctly paired
		$d^2 y$	[4]		dy
6	(c)	$\frac{d^2 y}{dx^2} = 336x^5 + 147x^2$	M1*	1.1	Attempt differentiate their $\frac{dy}{dx}$, allow one error only
		$r = 1 \implies \frac{d^2 y}{d^2 y} > 0$			$\frac{d^2 y}{dx^2} = \frac{189}{4} = 47.25$ (not required but if given then must be correct
		$x = \frac{1}{2} \longrightarrow \frac{1}{dx^2} > 0$			for their value of x)
		Hence $r = \frac{1}{2}$ gives a minimum	Δ1ft	11	Must see both statements; no need to see calculation
		$\frac{1}{2}$	АШ	1.1	ft their 2nd derivative and their positive x
		$x = -1 \implies \frac{d^2 y}{dx^2} < 0$	dM1	1.1	Substitute their –ve x into their $\frac{d^2y}{dx^2}$; may be implied by –189
					www in this part, ft their -ve x value
		Hence $x = -1$ gives a maximum	A1ft	2.2a	(-189 not required but if given then must be correct for their value
					OI X) NB differentiating $8r^6 \pm 7r^3 = 1$ can achieve M1A0dM1A0 (may
			[4]		2/4)