Question		on	Answer	Marks	AO	Guidance	
11	(a)			M1*	3.3	Attempts motion for the motorcycle in	
						terms of t with $a = 0$ – allow $s = 16t$	
						for this mark or attempts motion of	
						the car with $u = 0$	
			Car: $s = 2t^2$	A1	1.1		
			Motorcycle: $s = 16(t - 1.5)$	A1	1.1		
			$2t^2 = 16(t-1.5)$	M1dep*	3.1 a	Equates their expressions for s to	
						obtain a three-term quadratic in t	
			$t^2 - 8t + 12 = 0 \Longrightarrow t = \dots$	M1	1.1	Attempts to solve their three-term	Dependent on all
						quadratic in <i>t</i>	previous M marks
							Must obtain two positive
							values for <i>t</i>
			$t_1 = 2$ and $t_2 = 6$	A1	1.1		
				[6]			
11	(b)		The motorcycle is ahead of the car	B1	3.2a		
				[1]			
11	(c)		Maximum distance is at $t = 4$	B1ft	3.1b	Follow through their positive values	Or from differentiating
						of <i>t</i>	$f(t) = 16t - 24 - 2t^2$
			$f(A) = 16(A) = 2A = 2(A)^2$	M1	3.4	Method for finding maximum distance	
			1(7) - 10(7) - 27 - 2(7)			between the car and motorcycle	
			$= 8 \mathrm{m}$	A1	1.1		
				[3]			
				[3]			