Question		Answer	Marks	AO	Guidance	
12		-6t + 24 = 0	M1	3.1b	Either attempt to differentiate and set	Need $bt + 24 = 0$
					a = 0 or attempt to complete the	
					square $-3(t-4)^2 + \dots$ to find t	
		T = 4	A1	1.1		
		$\int (-3t^2 + 24t + k) dt$	M1*	1.1	Attempt to integrate v (at least two	
		$\int (-2\pi + 2\pi + \kappa) dx$			terms correct)	
		$=-t^{3}+12t^{2}+kt(+c)$	A1	1.1		
		$\left(-4^{3}+12(4)^{2}+4k\right)-\left(-1^{3}+12(1)^{2}+k\right)=297$	M1dep*	2.1	Setting up an equation in k using	If correct $k = 60$
					297, and $t = 1$ and their $t = 4$ and	
		leading to $k = \dots$			attempt to solve for k	
		$t^2 - 8t - 20 = 0$	M1	1.1	Setting $v = 0$ and attempt to solve	Dependent on both
		(t-10)(t+2) = 0			three-term quadratic in t (perhaps	previous M marks
					BC)	
		As $t \ge 0$, $t \ne -2$. $t = 10$	A1	2.3	Must see explicit rejection of	
					negative value of <i>t</i>	
			[7]			