

A train consists of an engine A of mass $50\,000\,\mathrm{kg}$ and a carriage B of mass $20\,000\,\mathrm{kg}$. The engine and carriage are connected by a rigid coupling. The coupling is modelled as light and horizontal.

The resistances to motion acting on A and B are 9000 N and 1250 N respectively (see diagram).

The train passes through station P with speed $15 \,\mathrm{m \, s}^{-1}$ and moves along a straight horizontal track with constant acceleration $0.01 \,\mathrm{m \, s}^{-2}$ towards station Q. The distance between P and Q is $12.95 \,\mathrm{km}$.

(a) Determine the time, in minutes, to travel between P and Q. [3]

[2]

[2]

For the train's motion between P and Q, determine the following.

- **(b)** The driving force of the engine.
 - (c) The tension in the coupling between A and B.