6	(a)	31 gives $3^2 + 1^2 = 10$	M1	2.1		OR
		10 is even and hence the suggestion is false	E1 [2]	2.1		M1 37 gives $3^2 + 7^2 = 58$ E1 58 is even and hence the suggestion is false
6	(b)	$n^{2} + (n+1)^{2} + (n+2)^{2}$	M1	2.1	Any valid expressions for three	
					consecutive integers	
		$3n^2 + 6n + 5$	A1FT	1.1	FT <i>their</i> expressions	
		$3(n^2+2n+1)+2$ which always leaves a	E1	2.1	Correct conclusion.	
		remainder of 2 and so cannot be divided				
		by 3				
		-	[3]			