Question	Answer	Marks	AOs	Guidance	
8	2x + 3y = 0	M1	3.1 a	Identify gradient of line $\left(=-\frac{2}{3}\right)$	Allow sign slip
	$\Rightarrow y = -\frac{2}{3}x$ and gradient $-\frac{2}{3}$	IVII		anywhere	
	Hence, gradient of the tangent is $\frac{3}{2}$	A1FT	1.1	Use $m_1m_2 = -1$ anywhere $\left(=\frac{3}{2}\right)$ FT	
		M1	1.1 a	their gradient Attempt differentiation	The power must be seen to decrease
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2}kx^{\frac{1}{2}}$	A1	1.1	Obtain $\frac{3}{2}kx^{\frac{1}{2}}$	
	At $x = 4$, $\frac{3}{2}k(4)^{\frac{1}{2}} = 3k$	M1	1.1	Substitute $x = 4$ and equate to the normal gradient	Tangent gradients may also be used i.e. $-\frac{1}{3k} = -\frac{2}{3}$
	Hence $3k = \frac{3}{2}$, so $k = \frac{1}{2}$	E1	1.1	AG	
	At P, $y = \frac{1}{2}(4)^{\frac{3}{2}} = 4$ so $P = (4, 4)$ so equation of normal through P is $(y-4) = -\frac{2}{3}(x-4)$	M1	3.1 a	Identify coordinates, gradient of normal and form equation with their coordinates	Accept $y = 4$
	When $y=0$, $x=10$ so $Q=(10, 0)$	A1	1.1	Substitute $y = 0$ and obtain $x = 10$	
	Using P (4, 4) and Q (10, 0) PQ ² = $(10-4)^2 + (0-4)^2$	M1	1.1	Use Pythagoras to obtain length PQ^2	
	Circle equation is $(x-4)^2 + (y-4)^2 = 52$	A1FT [10]	1.1	Accept equivalent forms FT their coordinates for P and Q	