Question		on	Answer	Marks	AOs	Guidance
4	(i)		$4\left[x^2-3x\right]+11$			No marks until attempt to complete the square
			$4\left[x^{2}-3x\right]+11$ $4\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]+11$ $a=4$	B1	1.1	Must be of the form $4(x \pm \alpha)^2 \pm$
			$(x-3/2)^2$	B1	1.1	
			$4\left(x-\frac{3}{2}\right)^2+2 \qquad c=2$	В1	1.1	
				[3]		
	(ii)		No real roots	B1	2.2a	Zero, none, 0, if not 'no real roots' must be consistent with their (i)
				[1]		
	(iii)		$r = 0 \Rightarrow 1$ real root or 1 repeated root	M1	2.4	Attempt to relate the value of <i>r</i> to the number of real roots (this can be implied with at least one correct statement)
			$r < 0 \Longrightarrow 2$ real roots			,
			$r > 0 \Longrightarrow$ no real roots	A1	2.4	All three statements correct
				[2]		