Question		n	Answer	Marks	AOs	Guidance	
5			Equations are $x^2 - 4y = 10, x + 5y = k$				
			DR				
			$\left(k-5y\right)^2-4y=10$	M1*	3.1a	Substitute for x/y to eliminate one of the variables	If y eliminated
			$25y^2 + (-4-10k)y + (k^2-10)(=0)$	A1	1.1	Obtain correct (unsimplified) quadratic	$5x^2 + 4x - 4k - 50 \ (=0)$
			Tangent $\Rightarrow b^2 - 4ac = 0$	Dep*M1	2.1	Uses $b^2 - 4ac$ correctly for their quadratic	
			$(-4-10k)^2-4(25)(k^2-10)=0$	A1	1.1	Fully correct substitution must equal 0	16-4(5)(-4k-50)=0
			$k = -\frac{127}{10} \ (-12.7)$	A1	2.2a	k correct – with sufficient working	
		OR	DR				
			Gradient of line = $-\frac{1}{5}$	B1			
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x$	B1		Correct differentiation	$2x - 4\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
			$\frac{1}{2}x = -\frac{1}{5}$	M1		Equates their derivative with their gradient of line	
			$x = -\frac{2}{5}$	A1		x from correct working only	
			$y = -\frac{123}{50}(-2.46) \Rightarrow k = -\frac{127}{10}(-12.7)$	A1		k from correct working only	
				[5]			