

| Question |     | Answer                                                                                     | Marks  | AO           | Guidance                             |                                              |
|----------|-----|--------------------------------------------------------------------------------------------|--------|--------------|--------------------------------------|----------------------------------------------|
|          |     | $\log\left(-\frac{x^2}{x}\right) = 3$                                                      | M1*    | 2.1          | Re-arranging and correctly combining | Or re-write 3 as $\log_2 8$                  |
|          |     | $\log_2\left(\frac{x^2}{kx-1}\right) = 3$                                                  |        |              | both log terms                       | and then combining                           |
|          |     |                                                                                            |        |              |                                      | e.g. $2\log_2 x$                             |
|          |     |                                                                                            |        |              |                                      | $= \log_2(8(kx-1))$                          |
|          |     | $\frac{x^2}{kx-1} = 2^3$                                                                   | Dep*M1 | 1.1          | Correctly remove logs                | $x^2 = 8(kx - 1)$                            |
|          |     | $\frac{1}{kx-1}$                                                                           |        |              |                                      |                                              |
|          |     | $x^{2} = 8(kx - 1)$<br>$x^{2} - 8kx + 8 = 0$                                               |        |              |                                      |                                              |
|          |     | $x^2 - 8kx + 8 = 0$                                                                        | A1     | 1.1          | AG                                   | Must show sufficient                         |
|          |     |                                                                                            |        |              |                                      | working to justify the                       |
|          |     |                                                                                            |        |              |                                      | given answer (i.e. at least one more line of |
|          |     |                                                                                            |        |              |                                      | working from previous                        |
|          |     |                                                                                            |        |              |                                      | M mark)                                      |
|          |     |                                                                                            | [4]    |              |                                      |                                              |
| 8        | (b) | $b^{2} - 4ac = 0 \Longrightarrow (-8k)^{2} - 4(1)(8) = 0$                                  | M1     | <b>3.1</b> a | Use of $b^2 - 4ac = 0$               | Or state equation must be of the form        |
|          |     |                                                                                            |        |              |                                      |                                              |
|          |     |                                                                                            | A1     | 1.1          |                                      | $(x+p)^2 = 0$                                |
|          |     | $k = (\pm) \frac{1}{\sqrt{2}}$ $k = \frac{1}{\sqrt{2}} \Longrightarrow x = 2\sqrt{2}$      | AI     | 1.1          | oe exact                             | with $p^2 = 8$                               |
|          |     |                                                                                            | A1     | 2.2a         | BC oe exact                          | so $x = (\pm)2\sqrt{2}$                      |
|          |     | $k = \frac{1}{\sqrt{2}} \Rightarrow x = 2\sqrt{2}$                                         |        |              |                                      | so $x = (\pm)2\sqrt{2}$                      |
|          |     |                                                                                            | A1     | 3.2b         | BC oe statement for rejection of     | reject $x = -2\sqrt{2}$ with                 |
|          |     | $k = -\frac{1}{\sqrt{2}} \Rightarrow x = -2\sqrt{2}$ and as $\log_2 x$ is only defined for |        |              | negative value of $x$ (allow decimal | valid reason                                 |
|          |     | $x > 0$ so $x \neq -2\sqrt{2}$                                                             |        |              | argument)                            |                                              |
|          |     |                                                                                            | [4]    |              |                                      |                                              |
|          |     |                                                                                            |        |              |                                      |                                              |