

1.1 Excellent curve for $y = kx^{-1}$ in both 1.1 quadrants: Correct shape, rotational ٠ symmetry about *O*, not touching axes Asymptote clearly the axes Not finite (i.e. extending to • the ends of the axes) Allow slight movement away . from asymptote at one end but not more

N.B. Ignore 'feathering' now that answers are scanned. **B1** only – correct shape in 1st and 3rd quadrants only. Graph must not touch axes more than once. Finite 'plotting' condoned.

Question		on	Answer	Marks	AO	Guidance	
				B1	1.1	Correct curve for $y = \ln x$ in 1 st and	For full marks curves
						4 th quadrants – asymptote clearly the	should only intersect
						y-axis	once in the 1 st quadrant
				[3]			
2	(b)		$x \ln x - k = 0$ is a rearrangement of the equation	B1	2.4	Either explained or shown	
			1 m m = k			algebraically	
			$\lim_{x} x = -\frac{1}{x}$				
			The curves intersect at a single point (and so	B1 FT	2.4	Follow through from incorrect curves	Intersection in the 1 st
			therefore the equation $x \ln x - k = 0$ has only one real			provided they only intersect once.	quadrant
			root)				
				[2]			