Question		n	Answer	Marks	AO	Guidance	
4	(a)		DR				
			$f\left(\frac{1}{2}\right) = 6\left(\frac{1}{2}\right)^3 + k\left(\frac{1}{2}\right)^2 + 57\left(\frac{1}{2}\right) - 20$	M1	1.1	Substitutes $x = \pm 0.5$ into $f(x)$	Allow one slip
			$\frac{3}{4} + \frac{k}{4} + \frac{57}{2} - 20 = 0 \Rightarrow k = -37$	A1	2.2a	AG - $f(\frac{1}{2}) = 0$ and at least one line of	Long division in this
						intermediate working before given answer	part is no marks
				[2]			
4	(b)		DR				
			$f(x) = 6x^3 - 37x^2 + 57x - 20$	M1	1.1	Quadratic factor found with correct	Or from long division:
			$\Rightarrow f(x) = (2x-1)(3x^2 + kx + 20)$			coefficient of x^2 and constant term	$3x^2$ and an x term at
						(or second correct root found from	least for M1
			2	A1	11	factor theorem)	TOT WIT
			$f(x) = (2x-1)(3x^2 - 17x + 20)$		1.1	Or second factor stated correctly	
			= (2x-1)(3x-5)(x-4)	A1	1.1		
				[3]			
4	(c)	(i)	DR				
			$e^{-t} = \frac{1}{2}, \frac{5}{3}, 4$	M1*	3.1a	Correctly relates e^{-t} to at least one of	
						the roots of $f(x) = 0$	
			$t = -\ln\left(\frac{1}{2}\right), -\ln\left(\frac{5}{3}\right), -\ln 4$	A1	1.1	Correctly takes logs and obtains	Any equivalent form
				[2]		correct values of t	Allow 3sf or better
4	(a)	(ii)	DR	[2]			
4	(c)	(11)		M1dep*	2.1	Correctly uses logs law to add their	Dependent on M mark
			$\sum t = -\left(\ln\left(\frac{1}{2}\right) + \ln\left(\frac{5}{3}\right) + \ln 4\right) = -\ln\left(\frac{5\times4}{2\times3}\right)$	Wildep	2.1	three values of t together	in part (i)
			$=\ln\left(\frac{3}{10}\right)$ or $-\ln\left(\frac{10}{3}\right)$	A1	2.2a	cao	[(-)
				[2]			