Question		n	Answer	Marks	AO	Guidance	
7	(a)		$(V =)\frac{1}{2}x(2x)y = x^2y$	B1	1.1	Correct simplified expression for the	
			_			volume	
			Slant height of the roof is $x\sqrt{2}$	B 1	3.1a	Allow $\sqrt{2x^2}$	
			$(S =)2xy + 2(\frac{1}{2}(2x)x) + 2(yx\sqrt{2})$	M1*	2.1	Attempt at surface area with at least	
						three of the five faces correct – can be unsimplified	
			$y = 600 - 2x^2$ $\rightarrow y = y^2 (300 - x^2)$	M1dep*	3.3	Rearranges and makes y the subject	
			$y = \frac{600 - 2x^2}{2x(1 + \sqrt{2})} \Rightarrow V = x^2 \left(\frac{300 - x^2}{x(1 + \sqrt{2})}\right)$			and substitutes to give an expression	
				3.54		for V in terms of x only	
			$V = x(300 - x^{2}) \left(\frac{(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})} \right)$	M1	1.1	Rationalises the denominator correctly	
			$V = x(300 - x^2) \left(\frac{1 - \sqrt{2}}{1 - 2} \right) = \left(\sqrt{2} - 1 \right) x(300 - x^2)$	A1	2.2a	a = 2, b = -1	
			(/	[6]			
7	(b)		$\frac{\mathrm{d}V}{\mathrm{d}x} = k(300 - 3x^2)$	M1*	1.1	M1 for attempt at differentiation –	Allow full marks ft their
			dx	A1	1.1	both powers reduced by 1	values of a and b
			$(k)(300 - 3x^2) = 0 \Rightarrow x = \dots$	M1dep*	1.1	Sets $\frac{dV}{dx} = 0$ and attempts to find x	
			x = 10 cm	A1	1.1		
				[4]			
7	(c)		$V = 828 \text{cm}^3$	B1	3.4	cao	828.4271247
				[1]			
7	(d)		V (or y) must be positive or $300 - x^2 > 0$	M1	3.5b	Explanation for constraint on x	
			so x cannot exceed $\sqrt{300}$ cm	A1	1.1	Correct value; accept e.g. 17.3 or	
			·			better	
				[2]			