Question		Answer	Marks	AO	Guidance	
7	(a)	$(V=) \frac{1}{2} x(2 x) y=x^{2} y$ Slant height of the roof is $x \sqrt{2}$ $\begin{aligned} & (S=) 2 x y+2\left(\frac{1}{2}(2 x) x\right)+2(y x \sqrt{2}) \\ & y=\frac{600-2 x^{2}}{2 x(1+\sqrt{2})} \Rightarrow V=x^{2}\left(\frac{300-x^{2}}{x(1+\sqrt{2})}\right) \\ & V=x\left(300-x^{2}\right)\left(\frac{(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})}\right) \\ & V=x\left(300-x^{2}\right)\left(\frac{1-\sqrt{2}}{1-2}\right)=(\sqrt{2}-1) x\left(300-x^{2}\right) \end{aligned}$	B1 B1 M1* M1dep* M1 A1 $[6]$	$\begin{gathered} \hline 1.1 \\ 3.1 \mathrm{a} \\ 2.1 \\ 3.3 \\ 1.1 \\ 2.2 \mathrm{a} \end{gathered}$	Correct simplified expression for the volume Allow $\sqrt{2 x^{2}}$ Attempt at surface area with at least three of the five faces correct - can be unsimplified Rearranges and makes y the subject and substitutes to give an expression for V in terms of x only Rationalises the denominator correctly $a=2, b=-1$	
7	(b)	$\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} x}=k\left(300-3 x^{2}\right) \\ & (k)\left(300-3 x^{2}\right)=0 \Rightarrow x=\ldots \\ & x=10 \mathrm{~cm} \end{aligned}$	M1* A1 M1dep* A1 [4]	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	M1 for attempt at differentiation both powers reduced by 1 Sets $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$ and attempts to find x	Allow full marks ft their values of a and b
7	(c)	$V=828 \mathrm{~cm}^{3}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.4	cao	828.4271247...
7	(d)	V (or y) must be positive or $300-x^{2}>0$ so x cannot exceed $\sqrt{300} \mathrm{~cm}$	M1 A1 [2]	$\begin{gathered} \text { 3.5b } \\ 1.1 \end{gathered}$	Explanation for constraint on x Correct value; accept e.g. 17.3 or better	

