Question		Answer	Marks	AO	Guidance	
4		Considers $\frac{f(2+h)-f(2)}{h}$	B1	2.1	Or considers $\frac{f(x+h)-f(x)}{h}$ with	
		$f(2+h) = 2(2+h)^2 - 3$ $= 2h^2 + 8h + 8 - 3$	M1	1.1	x = 2 substituted at some point Considers $f(2+h)$ and attempts to expand	Or considers $f(x+h)$ and attempts to expand
		$f(2+h)-f(2) = (2h^2+8h+5)-5 = 2h^2+8h$	A1	1.1	Correct simplified expression for $f(2+h)-f(2)$	Correct simplified expression for $f(x+h)-f(x)$
		$\frac{f(2+h) - f(2)}{h} = 2h + 8$	A1	1.1	Correct simplified expression for $\frac{f(2+h)-f(2)}{h}$	Correct simplified expression for $\underline{f(x+h)-f(x)}$
		$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = 8$	A1	2.2a	cao – must be explicit that the limit (and not simply $h = 0$) is considered	h
			[5]			