Question		l	Answer	Marks	AO	Guidance	
6	(a)		$3x^2 + 2 > 0$ for all values of x therefore stationary point	B1	2.4		
			is a minimum				
				[1]			
6	(b)		$y' = \int (3x^2 + 2) dx = x^3 + 2x + k$	M1*	2.1	Attempt to integrate (at least one of	Condone with no $+k$
			J J J			the terms in <i>x</i> correct)	
			y' = 0 at $x = -1$	M1dep*	1.1	Uses correct conditions to find the	If correct $k = 3$
			$\rightarrow (-1)^3 + 2(-1) + k = 0$ leading to $k =$			value of k (candidates may use the	
			\rightarrow (1) + 2(1) + k = 0 reading to k =			fact that when $x = 0$, $y' = 3$)	
			$v = \int (r^3 + 2r + 3r) dr = \frac{1}{2}r^4 + r^2 + 3r + c$	M1	1.1	Integrates their y' correctly (allow	Condone with no $+c$
			$\int (x + 2x + 5) dx + 4x + 5x + 5x + 5$			with $k = 0$)	(allow use of same letter
							for second constant)
			$(-1,\frac{1}{4}) \Rightarrow \frac{1}{4}(-1)^4 + (-1)^2 + 3'(-1) + c = \frac{1}{4}$	M1	1.1	Uses correct conditions to find the	
			$\begin{pmatrix} 4 \\ 4 \end{pmatrix}$			value of <i>c</i>	
			reading to $c = \dots$	A 1	25	and (must include u -)	
			$y = \frac{1}{4}x^{-} + x^{2} + 3x + 2$	AI	2.3	cao (must include $y = $)	
				[5]			