Question		Answer	Marks	AO	Guidance	
8	(a)	$y = 1 - x + \frac{6}{\sqrt{x}}$ leading to $y' = \dots$	M1	2.1	Derivative of the form $-1 + kx^{-\frac{3}{2}}$	
		$y' = -1 - 3x^{-\frac{3}{2}}$	A1	1.1		
		At $x = 1, m_T = -4 \Longrightarrow m_N = \frac{1}{4}$	M1*	1.2	Substitutes $x = 1$ into their derivative and correct use of $mm' = -1$	
		$y-6 = \frac{1}{4}(x-1)$	M1dep*	1.1	Use of $y-6=m_N(x-1)$	
		-x + 4y = 23	A1	1.1	oe	
			[5]			
8	(b)	$x = 4, y = 1 - 4 + \frac{6}{\sqrt{4}} = 0$	B1	1.1	AG – must show sufficient working	
		$\sqrt{4}$	543		and must see $= 0$	
8	(-)	DR	[1]			
8	(c)	$\int \left(1 - x + \frac{6}{\sqrt{x}}\right) dx =$	M1*	2.1	Attempt to integrate with at least two terms correct	
		$=x-\frac{1}{2}x^2+12\sqrt{x}$	A1	1.1		
		$\left(4 - \frac{1}{2}\left(4^{2}\right) + 12\sqrt{4}\right) - \left(1 - \frac{1}{2} + 12\right) = \dots$	M1dep*	1.1	Use of correct limits (1 and 4)	If correct, then expect to see 7.5
		$\frac{1}{2}\left(\frac{23}{4}+6\right)(1)$	B1ft	3.1a	Any correct numerical expression for the area of the trapezium between $x = 0$ and $x = 1$ using their result from (a)	
		$\frac{107}{8}$	A1	2.2a	Or exact equivalent (e.g. 13.375)	
		8	[5]			