Question		n	Answer	Marks	AO	Guidance	
5	(a)	(i)	$y = \frac{k}{x}$	M1	2.1	Allow any letter, (except x , y) or value, for k	
			The curve passes through the point $(1, -\frac{1}{2})$ so $k = -\frac{1}{2}$ or $y = -\frac{1}{2x}$	A1	1.1	Allow this mark for just $-\frac{1}{2x}$ oe	
			$y = -\frac{1}{2x} \Longrightarrow y' = \frac{1}{2x^2}$	A1ft	1.1	Differentiating their $f(x)$ correctly Need to see their value of k substituted	Need to see $y' = \text{ or } f'(x) = \text{ or } \frac{dy}{dx} =$
				[3]			
5	(a)	(ii)		B1ft [1]	1.1	 Excellent curve in 1st and 2nd quadrants only: Correct shape, symmetrical, not touching axis Asymptote clearly the axes Not finite Allow slight movement away from asymptote at one end but not more 	Follow through provided their curve is of the form $y = \frac{k}{x^2}$ where $k > 0$
5	(b)		C has no stationary points as indicated by the fact that the curve for the gradient function (seen in part (a)(ii)) does not intersect (or touch) the x-axis	B1 [1]	2.4	Curve in 5(a)(ii) must be of the form $y = \frac{k}{x^2}$	Need to see idea of intersecting, touching, crossing etc <i>x</i> -axis only

Question		n	Answer	Marks	AO	Guidance	
5	(c)		$y = -\frac{1}{2(x+2)}$	M1 A1	1.1 2.2a	Their $y = f(x)$ with x replaced by $x \pm 2$ oe (e.g., $y = -\frac{1}{2x+4}$)	May be $y = \frac{k}{x}$ Must have $y = \dots$
				[2]			