7	(a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (4\mathbf{i} - 3\mathbf{j}) - (2\mathbf{i} + 4\mathbf{j})(= 2\mathbf{i} - 7\mathbf{j})$	M1	2.1	Correct method to find either \overrightarrow{AB} or	
					BA	
		$\sqrt{53}$ or 53 from $\pm (2\mathbf{i} - 7\mathbf{j})$	A1	1.1	cao	
		$\left \overline{OA}\right = \sqrt{20}, \left \overline{OB}\right = 5$	B1	1.1	Correct lengths for <i>OA</i> and <i>OB</i> (or their squares)	
		$\cos AOB = \frac{\left(\sqrt{20}\right)^2 + 5^2 - \left(\sqrt{53}\right)^2}{2\left(\sqrt{20}\right)(5)}$	M1	3.1a	Correct use of cosine rule for their <i>OA</i> , <i>OB</i> and <i>AB</i>	cos <i>AOB</i> may not be the subject, but substitutions must be correct for their values
		$\cos AOB = \left(\frac{20 + 25 - 53}{10\sqrt{20}}\right) = -\frac{4}{5(2\sqrt{5})} = -\frac{2\sqrt{5}}{25}$	A1	2.2a	AG – sufficient working must be shown	Condone this result from calculator without intermediate working.

Question		n	Answer	Marks	AO	Guidance	
				[5]			
7	(b)		$\sin^2 AOB = 1 - \left(-\frac{2\sqrt{5}}{25}\right)^2$	M1	3.1 a	Using the identity	
						$\cos^2 X + \sin^2 X = 1$ with	
			(25)			$\cos X = -\frac{2\sqrt{5}}{25}$	
			$\sin^2 AOB \xrightarrow{121} \sin AOB \xrightarrow{11\sqrt{5}}$	A1	1.1	Or exact equivalent – justification not	
			$\sin AOB = \frac{125}{125} \Rightarrow \sin AOB = \frac{125}{25}$			required for taking the positive square	
						root	
				[2]			
7	(c)	A	Area of $OACB = 2\left(\frac{1}{2}\left(\sqrt{20}\right)(5)\left(\frac{11\sqrt{5}}{25}\right)\right)$	M1	3.1 a	Use of $A = ab \sin C$ (or equivalent)	May not use exact values
						with OA and OB and sin AOB	here
			22	A1	1.1	cao	Condone awrt 22.0
				[2]			