Question	Answer	Marks	AO	Guidance	
2	DR				
	$x\sqrt{5} + 32 = x\sqrt{45} + 2x$				
	$x\sqrt{5} + 32 = x\sqrt{45} + 2x$ $x(\sqrt{45} + 2 - \sqrt{5}) = 32$	M1*	1.1	Re-arranging and factorising out <i>x</i>	
	$\sqrt{45} = 3\sqrt{5}$	B1	1.1	Replacing $\sqrt{45} = 3\sqrt{5}$ (Or $\sqrt{45} \times \sqrt{5} = 15$ if multiplying through by $\sqrt{5}$)	Could appear at any point
	$x = \left(\frac{32}{2\sqrt{5}+2}\right)\left(\frac{2\sqrt{5}-2}{2\sqrt{5}-2}\right)$	M1dep*	1.1a	Correct method for rationalising the surd of the denominator with x taking the form $\frac{k_1}{k_2\sqrt{5}+k_3}$ o.e.	
	$x = \frac{32(2\sqrt{5} - 2)}{20 - 4} = 4\sqrt{5} - 4$	A1	1.1	cao where $a = 4, b = -4$ Need to see some correct working	
		[4]			
	ALTERNATIVE SCHEME				
	$\sqrt{45} = 3\sqrt{5}$	B1		Replacing $\sqrt{45} = 3\sqrt{5}$ (Or $\sqrt{45} \times \sqrt{5} = 15$ if multiplying through by $\sqrt{5}$)	Could appear at any point
	$(32-2x)^2 = (2\sqrt{5}x)^2 \Rightarrow 16x^2 + 128x - 1024 = 0$	M1*		Rearranging and squaring leading to a 3TQ	
	$x = 4\sqrt{5} - 4 \text{ only}$	M1dep*		Solve by completing the square or using quadratic formula	
		A1 [4]			