Question		Ansv	Answer		AO	Guidance	
5	(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$	$= 3e^{3x} - 21$	B1	1.1	Correct derivative	
		$3e^{3x}$	$-21 = 3 \Longrightarrow e^{3x} = 8$	M1*	1.1	Setting derivative equal to 3 and rearranging to $e^{3x} = k$ where $k > 0$	
		ln e ³²	$\alpha = \ln 8$	M1dep*	1.1	Correctly taking the natural log of both sides of an equation of the	
						form $e^{3x} = k$ or $e^x = \sqrt[3]{k}$ where $k > 0$	
		$x = \frac{1}{3}$	$\sin 8 : x = \ln 2$	A1	1.1	cao – not necessary to explicitly state $a = 2$	
				[4]			
5	(b)	$y = \epsilon$	$2^{3\ln 2} - 21\ln 2 - 8$	B1FT	1.1	Substitute their <i>x</i> involving "ln" to find the corresponding exact <i>y</i> -coordinate	Need not be simplified
		y-(c	$e^{3\ln 2} - 21\ln 2 - 8 = 3(x - \ln 2)$	M1	1.1	Tangent must be of the of the form $y - (e^{3x_1} - 21x_1 - 8) = 3(x - x_1)$	Allow non-exact working
						Could use $y = mx + c$ to obtain $c = e^{3x_1} - 24x_1 - 8$	
		y = 3	$3x-24\ln 2$	A1	1.1	oe c must be exact	
				[3]			