Question		n Answer	Marks	AO	Guidance	
9	(a)	$f'(x) = 3x^2 - 2x - 5$	B1	1.1		
		$x_{n+1} = x_n - \frac{x_n^3 - x_n^2 - 5x_n + 10}{3x_n^2 - 2x_n - 5}$	M1	1.1	Substitute into correct formula for Newton-Raphson	
		$x_{n+1} = \frac{3x_n^3 - 2x_n^2 - 5x_n - (x_n^3 - x_n^2 - 5x_n + 10)}{3x_n^2 - 2x_n - 5} =$	E1	2.1	AG a correct intermediate step leading to the given answer is required	
		$=\frac{2x_n^3 - x_n^2 - 10}{3x_n^2 - 2x_n - 5}$			1	
			[3]			
9	(b)	$x_2 = -2.607$	B1	1.1	BC	
		$x_3 = -2.535$			All three values must be given to 4	
		$x_4 = -2.533$			significant figures.	
			[1]			
9	(c)	f(-2.5325) and $f(-2.5335)$	M1	1.1	Accept other alternative values which would confirm α as a root correct to 4 s.f.	
		$(-2.5325)^3 - (-2.5325)^2 - 5(-2.5325) + 10 =$ 0.0066125	A1	2.1	At least the result of evaluation must be shown	
		$(-2.5335)^3 - (-2.5335)^2 - 5(-2.5335) + 10 =$ -0.0127017				
		Since $f(-2.5325) > 0$ and $f(-2.5335) < 0$	El	2.4	The change of sign must be pointed	
		x_4 is α to 4 s.f.			10	
			[3]			
9	(d)	$3(-1)^2 - 2(-1) - 5 = 0$	B1	2.1		
		Since the fraction is undefined at $x = -1$, x_2 is	E1	1.2	Accept references to a stationary	or the tangent to the curve
		undefined			point of the function	being horizontal
			[2]			