Question		n	Answer	Marks	AO	Guidance	
12	(a)		Use $\frac{dy}{dt} = \frac{dy}{dt} \div \frac{d\theta}{dt}$	M1	1.1a		
			$dx d\theta dx$				
			Obtain $\frac{-3\cos\theta}{2}$	A1	1.1		
			$2\sin\theta$	[2]			
12	(b)		$(y-3\sin\theta) = \frac{-3\cos\theta}{(x-2\cos\theta)}$	M1	3.1a	Attempt equation of straight line in any	OR NAME OF OR
			$2\sin\theta$			Accept x, y confusion	MI when $\theta = \theta_Q$, gradient of
							curve is given by $\frac{-3\cos\theta_Q}{2\sin\theta_Q}$
			$2y\sin\theta - 6\sin^2\theta = -3x\cos\theta + 6\cos^2\theta$	M1	1.1	Simplify their equation and use	M1 The gradient of the line
						$\cos^2\theta + \sin^2\theta = 1$	through $(2,6)$ and
							$(2\cos\theta_Q, 3\sin\theta_Q)$ is
							$3\sin\theta_Q - 6$
							$\overline{2\cos\theta_Q-2}$
			$2y\sin\theta + 3x\cos\theta = 6$	A1FT	1.1		M1 Equate and clear fractions
			$12\sin\theta + 6\cos\theta = 6 \Longrightarrow 2\sin\theta + \cos\theta = 1$	E1	2.1	Substitute (2, 6) and simplify to AG	E1 Obtain AG
				[4]			
12	(c)		Use $R\sin(\theta + \alpha)$ on $2\sin\theta + \cos\theta$	M1	3.1 a	Should go as far as finding R and α	OR M1 S
			$R\sin\alpha = 1, R\cos\alpha = 2$			Allow alternative forms	MI Square and use
			_				$\sin^2\theta + \cos^2\theta = 1$
			Obtain $\alpha = 0.4636$ and $R = \sqrt{5}$	A1	1.1		A1
							$4\sin^2\theta + 4\sin\theta(1-2\sin\theta)$
							$+(1-\sin^2\theta)=1$
			Use correct order of operations to solve	M1	1.1	Attempt to solve their $R\sin(\theta + \alpha)$	M1 Simplify and solve
			$\sqrt{5}\sin\left(\theta + 0.4636\right) = 1$				$5\sin^2\theta - 4\sin\theta = 0$
			Obtain 0	B1	2.2a		
			Obtain 2.21	A1	1.1	Or better (2.214345)	
				[5]			