Question		on	Answer	Marks	AO	Guidance	
14	(a)		E.g. $\int \frac{50}{50n - n^2} dn = 0.1 \int dt$	M1	1.1 a	Attempt to separate variables	
				M1	3.1a	Attempt to use partial fractions on LHS	
			$\int \left(\frac{1}{n} + \frac{1}{50 - n}\right) \mathrm{d}n = 0.1 \int \mathrm{d}t$	A1	1.1		
			$\ln n - \ln (50 - n) = 0.1t + c$	M1	3.1 a	Integrate both sides providing LHS contains a ln expression	
			$\ln\frac{n}{50-n} = 0.1t + c$	M1	1.1	Use log law on LHS	
			$\frac{n}{50-n} = A e^{0.1t}$	M1	3.1a	Apply inverse of ln and deal with $+c$ Accept e^{c} of	
				M1	1.1	Make <i>n</i> the subject of their expression	
			$n = \frac{50Ae^{0.1t}}{1 + Ae^{0.1t}}$	A1	1.1	Accept e^c oe	
			$n = \frac{50A}{e^{-0.1t} + A}$	E1	1.1	Multiply numerator and denominator by $e^{-0.1t}$. AG	
				[9]			
14	(b)		As <i>t</i> becomes large, $e^{-0 t}$ becomes approximately 0, <i>A</i> cancels and so 50 birds are expected in the long term	E1	3.4	50 seen www	
			C .	[1]			
14	(c)		E.g. Only allow integer values of <i>t</i> E.g. Include an initial value for <i>A</i> E.g. John could record the maximum number of each species that he sees.	E1 [1]	3.5c	For one refinement	

