Question		Answer	Marks	AO	Guidance	
4		If <i>n</i> is even then <i>n</i> can be written as $2m$. $n^3+3n-1 = 8m^3 + 6m - 1$	E1	2.1	Consider when <i>n</i> is even	Substitute 2 <i>m</i> or equiv Must include reasoning, including that 2 <i>m</i> represents an even number
		$= 2(4m^{3} + 3m) - 1$ For all <i>m</i> , 2(4m ³ + 3m) is even, hence 2(4m ³ + 3m) - 1 is odd	E1	2.4	Conclude from useable form	Must be of a form where odd can be easily deduced SR E1 for If <i>n</i> is even, n^3 is even, $3n$ is even, hence n^3+3n is even + even = even and therefore n^3+3n-1 is even - odd = odd Each step must be justified
		If n is odd then n can be written as $2m + 1$ $n^3+3n-1 = 8m^3 + 12m^2 + 6m + 1 + 6m + 3 - 1$ $= 8m^3 + 12m^2 + 12m + 3$	E1	2.1	Consider when <i>n</i> is odd	Substitute $2m + 1$ or equiv Must include reasoning, including that 2m + 1 represents an odd number
		$= 2(4m^{3} + 6m^{2} + 6m) + 3$ For all m, 2(4m ³ + 6m ² + 6m) is even, hence 2(4m ³ + 6m ² + 6m) + 3 is odd	E1	2.4	Conclude from useable form	Must be of a form where odd can be easily deduced SR E1 for If <i>n</i> is odd, n^3 is odd, $3n$ is odd, hence n^3+3n is odd + odd = even and therefore n^3+3n-1 is even - odd = odd Each step must be justified
			[4]			