Question		n	Answer	Marks	AO	Guidance	
5	(i)		centre is $(-3, 1)$	B1	1.1	Correct centre of circle	Allow $x = -3$, $y = 1$
			$(x+3)^2 - 9 + (y-1)^2 - 1 - 10 = 0$ (x+3) ² + (y-1) ² = 20	M1	1.1a	Attempt to complete the square twice	Allow for $(x \pm 3)^2 \pm 9 + (y \pm 1)^2 \pm 1$ seen $(x \pm 3)^2 + (y \pm 1)^2 - 10 = 0$ is M0 as no evidence of subtracting the constant terms to complete the squares Or attempt to use $r^2 = g^2 + f^2 - c$
			radius = $2\sqrt{5}$ or $\sqrt{20}$	A1	1.1	Correct radius	From correct working only, including correct factorisation Allow $r = 4.47$, or better
				[3]			
	(ii)		$x^{2} + (2x-3)^{2} + 6x - 2(2x-3) - 10 = 0$ OR $(x+3)^{2} + (2x-4)^{2} = 20$	M1	3.1a	Substitute the linear equation into the quadratic equation	Either substitute for y , or an attempt at x Either use the given expanded equation or their attempt at a factorised equation
			$x^2 - 2x + 1 = 0$	A1	1.1	Correct three term quadratic	Must be three terms, but not necessarily on same side of equation
			x = 1	A1	1.1	BC, or from any valid method	A0 if additional incorrect <i>x</i> value
			(1, -1)	A1	2.1	A0 if additional points also given	Allow $x = 1, y = -1$
				[4]			
	(iii)		The line is a tangent to the circle at $(1, -1)$	B1ft	2.2a	Correct deduction Strict follow-through on their number of roots from (ii)	Allow just mention of 'tangent' Allow other correct statements such as the line and the circle only touch once
				[1]			