9	(i)	$f(x) = c + 16 - (x - 4)^2$	M1*	3.1a	Attempt to identify maximum point	Full attempt to complete the square Could differentiate, equate to 0 and solve to get $8 - 2x = 0$, so $x = 4$
		<i>c</i> + 16 = 19	M1d*	1.1a	Link maximum point to 19	Link the constant term of their completed square to $19 - \text{must}$ involve <i>c</i> Allow equation or inequality (including incorrect inequality) If using differentiation then link f(their $x = 4$) to 19

Question		on	Answer	Marks	AO	Guidance	
			<i>c</i> = 3	A1	1.1	Solve to obtain $c = 3$	A0 if given as inequality unless subsequently corrected Must come from fully correct working, so $f(x) = c + 16 - (x + 4)^2$, leading to c + 16 = 19 hence $c = 3$ is M1 M1 A0
				[3]			OR M1* Attempt to use $b^2 - 4ac = 0$ on their attempt at $f(x) - 19 = 0$ M1d* Attempt to solve their 64 - 4(-1)(c - 19) = 0 A1 Obtain $c = 3$
	(ii)		f(2) = c + 12	B1	1.1	Correct f(2)	Stated or implied by being used in later method
			$f(c+12) = c + 8(c+12) - (c+12)^2$	M1*	1.2	Attempt correct composition of ff	Must be attempt at composition of functions so M0 for ${f(2)}^2$
			$-48 - 15c - c^2 = 8$ $c^2 + 15c + 56 = 0$	M1d*	1.1a	Equate to 8 and rearrange to useable form	Expand and rearrange to a three term quadratic Could be implied by the two correct roots
			c = -7, c = -8	A1	2.1	Both correct values for <i>c</i>	BC

Question		n	Answer	Marks	AO	Guidance	
				[4]			OR for the first two marks M1* Attempt $ff(x)$ is attempt at
							$ff(x) = c + 8(c + 8x - x^2) - (c + 8x - x^2)^2$
							M1d * Attempt $ff(2)$ using their $ff(x)$,
							which may no longer be correct