10	(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - 2t^{-2}$	B1	1.1	Correct $\frac{\mathrm{d}x}{\mathrm{d}t}$	Any equivalent form
		$\frac{\mathrm{d}y}{\mathrm{d}t} = 1 + 2t^{-2}$	B1	1.1	Correct $\frac{dy}{dt}$	Any equivalent form
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1+2t^{-2}}{1-2t^{-2}} = \frac{\frac{t^2+2}{t^2}}{\frac{t^2-2}{t^2}}$	M1	1.1 a	Attempt correct method to combine their derivatives	Division must be correct way around
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{t^2 + 2}{t^2 - 2}$	A1	1.1	Obtain correct derivative	Allow any simplified equivalent such as $1 + \frac{4}{t^2 - 2}$
			[4]			

Question	Answer	Marks	AO		Guidance
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow t^2 + 2 = 0$	E1ft	2.2a	Justify $t^2 + 2 = 0$ for stat point	Must state that gradient (or $\frac{dy}{dx}$) = 0 (cannot be implied by method) then equate their numerator to 0 Allow use of a gradient that is no longer a fraction
	$t^2 \ge 0$, hence $t^2 + 2 = 0$ has no solutions, hence curve has no stationary points	E1	2.4	Justify no stationary points	Explain why there are no solutions eg referring to $t^2 + 2 \ge 2$ eg t^2 is always positive (as $t \ne 0$ given) eg $t^2 + 2 = 0$ has no real roots and conclude with 'no stationary points' Must now be from a fully correct derivative only
(iii)	$x + y = 2t$ hence $t = \frac{1}{2}(x + y)$	B1	1.1	Correct expression for <i>t</i>	Any correct equation involving <i>t</i> along with <i>x</i> and/or <i>y</i> where <i>t</i> only appears once
	$x = \frac{1}{2}(x+y) + \frac{2}{\frac{1}{2}(x+y)}$	M1	1.2	Substitute for <i>t</i> into either equation	Expression for <i>t</i> must be correct Could be using attempt (possibly no longer correct) at a rearranged parametric equation eg $xt - t^2 = 2$
	$2x(x + y) = (x + y)^{2} + 8$ $2x^{2} + 2xy = x^{2} + 2xy + y^{2} + 8$	M1	3.1 a	Attempt rearrangement	As far as requested form
	2 2 0	A1	1.1	Correct equation	Any correct three term equivalent
	$x^2 - y^2 = 8$				Allow A1 for eg $y = \pm \sqrt{x^2 - 8}$, but A0
					if not ±
		[4]			