Question		n	Answer	Marks	AO	Guidance	
11	(i)		When $t = 0, M = 300$	B1	2.2a	Identify that the initial mass is 300g	Could be implied by eg $e^{-0.05t} = 0.5$
			$300e^{-0.05t} = 150$ $e^{-0.05t} = 0.5$ $-0.05t = \ln 0.5$	M1	3.1a	Equate to 150 and attempt to solve	Correct order of operations as far as attempting <i>t</i> If using logs on $300e^{-0.05t} = 150$ then the LHS must be dealt with correctly
			t = 13.9 (minutes)	A1 [3]	1.1	Obtain 13.86, or better	Allow 14 minutes www Or 13 minutes and 52 seconds
				[0]			
	(ii)		$M_2 = 400 \mathrm{e}^{kt}$	B1	2.2a	State or imply 400e ^{kt}	Could be implied by stating general form of Ae^{kt} with $A = 400$ Any unknowns permitted
			$320 = 400e^{10k}$ k = 0.11n0.8	M1	1.1a	Attempt to find <i>k</i>	Substitute $M = 320$, $t = 10$ and attempt k Must be using valid method
			$M_2 = 400 \mathrm{e}^{-0.0223t}$	A1	1.1	Obtain correct expression for mass of second substance	Allow exact or decimal k (2sf or better) Must be seen or used as a complete term, not just implied by stated values of A and k
			Substance 1: $\frac{dM_1}{dt} = -15e^{-0.05t}$ Substance 2: $\frac{dM_2}{dt} = -8.93e^{-0.0223t}$	M1	3.1a	Attempt differentiation at least once	To obtain $ae^{-0.05t}$ or $be^{-0.0223t}$, where a and b are non-zero constants not 300 and 400 respectively
			dt = 0.55c	A1ft	1.1	Both derivatives correct	Following their equation for substance 2

Question	Answer	Marks	AO		Guidance
	$-15e^{-0.05t} = -8.93e^{-0.0223t}$ $e^{0.0277t} = 1.681$	M1	3.1a	Equate derivatives and rearrange as far as $e^{f(r)} = c$	Equation must be of the form $ae^{-0.05t} = be^{-0.0223t}$ Combining like terms to result in a two term equation – not necessarily on opposite sides If logs are introduced earlier then allow M1 only if the products are correctly split so eg ln(15) × (-0.05t) is M0 M0 if attempting to take a log of a term that is negative
	0.0277t = 0.519	M1	1.1	Attempt to solve equation of form $e^{f(t)} = c$	As far as attempting <i>t</i> Or equiv if logs have been taken earlier
	time = 18.75 minutes	A1	3.2a	Obtain correct value for <i>t</i> Allow 18.7, 18.8 or 19 mins	Units required Could be 18 minutes and 45 seconds Must have been working with 3sf or better throughout
		[8]			
12	DR				
	$\frac{dy}{dx} = \frac{(-8\sin 2x)(3 - \sin 2x) - (4\cos 2x)(-2\cos 2x)}{(3 - \sin 2x)^2}$	M1	3.1a	Attempt use of quotient rule	Correct structure, including subtraction in numerator Could be equivalent using the product rule
		A1	1.1	Obtain correct derivative	Award A1 once correct derivative seen even subsequently spoiled by simplification attempt