12		DR				
		$\frac{dy}{dx} = \frac{(-8\sin 2x)(3-\sin 2x) - (4\cos 2x)(-2\cos 2x)}{(3-\sin 2x)^2}$	M1	3.1a	Attempt use of quotient rule	Correct structure, including subtraction in numerator Could be equivalent using the product rule
			A1	1.1	Obtain correct derivative	Award A1 once correct derivative seen even subsequently spoiled by simplification attempt

Question	n Answer	Marks	AO		Guidance
	EITHER when $x = \frac{1}{4}\pi$, gradient $= \frac{-16-0}{4} = -4$	M1	2.4	DR Attempt to find gradient at $\frac{1}{4}\pi$	EITHER State that $x = \frac{1}{4}\pi$ is being used, and show their fraction with each term
					(including 0) explicitly evaluated before being simplified ie $x = \frac{1}{4}\pi$, gradient = -4 is M0
					OR Substitute $\frac{1}{2}\pi$ into their derivative and
	$\frac{\frac{(-8\sin\frac{\pi}{2})(3-\sin\frac{\pi}{2})-(4\cos\frac{\pi}{2})(-2\cos\frac{\pi}{2})}{(3-\sin\frac{\pi}{2})^2} = -4$				evaluate $\frac{1}{4}\pi$ into their derivative and
	gradient of normal is $\frac{1}{4}$	B1ft	2.1	Correct gradient of normal	ft their gradient of tangent
	area of triangle is $\frac{1}{2} \times \frac{1}{16} \pi \times \frac{1}{4} \pi (= \frac{1}{128} \pi^2)$	M1	2.1	Attempt area of triangle ie $\frac{1}{2} \times \frac{1}{4} \pi \times (\text{their } y)$	y coordinate could come from using equation of normal, $y = \frac{1}{4}(x - \frac{1}{4}\pi)$, or from using gradient of normal Could integrate equation of normal
	$\int \frac{4\cos 2x}{3-\sin 2x} dx = -2\ln 3-\sin 2x $	M1*	3.1a	Obtain integral of form $k\ln 3 - \sin 2x $	Condone brackets not modulus Allow any method, including substitution, as long as integral of correct form
		A1	1.1	Obtain correct integral	Possibly with unsimplified coefficient
	$\int_{0}^{\frac{1}{4}\pi} \frac{4\cos 2x}{3-\sin 2x} dx = (-2\ln 2) - (-2\ln 3)$	M1d*	2.1	Attempt use of limits	Using $\frac{1}{4}\pi$ and 0; correct order and subtraction (oe if substitution used) Must see a minimum of $-2 \ln 2 + 2\ln 3$
	$2\ln 3 - 2 \ln 2 = \ln 9 - \ln 4 = \ln \frac{9}{4}$ OR $2\ln 3 - 2 \ln 2 = 2\ln \frac{3}{2} = \ln \frac{9}{4}$	A1	1.1	Correct area under curve	Must be exact At least one log law seen to be used before final answer

Question		n	Answer	Marks	AO	Guidance	
			hence total area is $\ln \frac{9}{4} + \frac{1}{128}\pi^2$ A.G.	A1	2.1	Obtain correct total area	Any equivalent exact form AG so method must be fully correct A0 if the gradient of -4 results from an incorrect derivative having been used A0 if negative area of triangle not dealt with convincingly
				[10]			
13	(i)	(a)	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{k}{N}$	B1	3.3	State correct differential equation	Or $\frac{dN}{dt} = \frac{1}{k'N}$ or equiv with k on LHS
				[1]			
		(b)	$kt = \int N dN$ $kt = \frac{1}{2}N^2 + c$	M1*	2.1	Attempt integration	Obtain equation of form $at = bN^2 + c$ Condone no $+ c$
			$0 = 80000 + c \Longrightarrow c = -80000$	M1d*	3.4	Attempt <i>c</i> from (0, 400)	Substitute $(0, 400)$ into their equation containing c and k Could give value for c , or could result in an equation involving both c and k depending on structure
			k = 96800-80000=16800	M1d*	3.4	Attempt <i>k</i> from (1, 440)	Substitute (1, 440) into their equation containing c (possibly now numerical) and k If c is numerical then value of k must be attempted If this gives second equation in c and k then the equations need to be solved simultaneously for c and k to award M1
			$N = \sqrt{(33600t + 160000)}$	A1	1.1	Correct equation for N	N must be the subject of the equation