Question		on	Answer	Marks	AO	Guidance	
2	(a)	(i)	Show <i>A</i> in third quadrant, with length of 8 and relevant angle marked on given axes	B1 [1]	1.2	Allow any correct angle	Condone <i>A</i> being located by correct i and j components instead of length and angle – could be stated as a coordinate or values marked on the axes
		(ii)	$x = 8\cos 240^\circ = -4$ $y = 8\sin 240^\circ = -4\sqrt{3}$	M1	1.1 a	Attempt both components from magnitude of 8 and an angle	Could use 60° (no need to consider whether positive or negative for this mark) Allow M1 for $8\cos\theta$ and $8\sin\theta$ attempted Condone a value for θ that may not be consistent with their diagram Max of M1 only, if A incorrect on diagram
			A is $-4\mathbf{i} - 4\sqrt{3}\mathbf{j}$	A1 A1 [3]	1.1 1.1	Obtain one correct component Obtain fully correct position vector	Condone eg $x = -4$ for $-4\mathbf{i}$ Allow 6.93, or better, for $4\sqrt{3}$ A0 if coordinate or column vector
	(b)		area = $0.5 \times 8 \times 6 \times \sin 120^{\circ}$	M1	3.1a	Attempt area of triangle, using correct formula	M0 if 240° used Allow plausible angle ie 30°, 60°, 120°, 150° Allow other incorrect angles as long as explicit on their diagram Allow multi-step methods as long as fully correct method Must be exact
			$= 12\sqrt{3}$	A1 [2]	1.1	Obtain 12√3	Must be exact www eg M1A0 for $12\sqrt{3}$ from <i>A</i> in second quadrant M1A0 for $12\sqrt{3}$ from using 60° without justification that sin120° = sin60°

Question		Answer	Marks	AO	Guidance	
(C	:)	$6i - (-4i - 4\sqrt{3}j)$	M1	3.1 a	Attempt 6 i – (their OA)	Allow BOD for $6\mathbf{i} - 4\mathbf{i} - 4\sqrt{3}\mathbf{j}$, even if
						final answer is not commensurate with 'invisible brackets'
						Invisible blackets
		$C ext{ is } 10\mathbf{i} + 4\sqrt{3} \mathbf{j}$	A1	1.1	Obtain 10 i + $4\sqrt{3}$ j	Allow 6.93, or better, for $4\sqrt{3}$
			[2]			
			[2]			SC B1 for $2\mathbf{i} - 4\sqrt{3}\mathbf{j}$ or $-10\mathbf{i} - 4\sqrt{3}\mathbf{j}$ ie a valid parallelogram having misinterpreted
						OABC