Question		Answer	Marks	AO		Guidance
3	(a)	<i>k</i> = 3	B1	2.2a	State 3	B0 for $k \ge 3$
						Allow B1 for $x \ge 3$, as this implies $k = 3$
			[1]			
	(b)	f(5) = -13	M1	1.2	Attempt f(5)	Could be implied by –13
						Could be part of algebraic attempt at $ff(x)$,
						with $x = 5$ used, but does not need to be
						evaluated for M1
		-13 is not in domain so f(-13), and				
		hence $ff(5)$, is not defined	A1	1.1	Correct conclusion	Allow equiv, such as 'not possible'
						SC Allow A1 for $f(-13) = 239$
			[2]			
	(c)	$(x-3)^2 - 17 = x$	M1	1.1a	Equate and attempt to solve	BC
		$x^2 - 7x - 8 = 0$				Equate and produce at least one root, not
		x = 8, x = -1				necessarily correct for their equation
						Could be implied by sight of 8, or 8 and -1 ,
						even if equation not seen
		Obtain at least $r = 8$	Δ1	11	If second root is given it must	www.eg.r = 8 given as only root from
					also be correct	(x - 8)(x - 1) is M1A0
		$x = -1$ is not valid as $x \ge 3$, so $x = 8$	A1	2.3	Obtain $x = 8$ only, having	Must be using $k = 3$; if referring to 'less than
					discarded $x = -1$, with a reason	k' then 3 must have been seen in part (a)
					such as 'not in the domain' or	Must see some indication that the other root
					'less than 3'	would have been -1 , eg a factor of $(x + 1)$ or
						a numerical quadratic formula not fully
						evaluated
			[3]			
	(d)	$f(x)$ and $f^{-1}(x)$ are reflections in the	B1	1.2	Correct description	Sufficient to see $f(x)$ and $f^{-1}(x)$ intersect on
		line $y = x$ so the point of intersection				y = x or reference to reflections in $y = x$
		must be on $y = x$				
			[1]			