Question		on	Answer	Marks	AO	Guidance	
5	(a)		$3x^2 - 6xy - 3x^2\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$	M1*	1.1a	Attempt implicit differentiation	Either of the two $\frac{dy}{dx}$ terms correct, allowing sign errors
				A1	2.1	Correct derivative www	Condone no '= 0' on RHS Condone $\frac{dy}{dx}$ = as long as not used
			$3x^{2} - 6xy + (2y - 3x^{2})\frac{dy}{dx} = 0$	M1d*	1.1 a	Attempt to make $\frac{dy}{dx}$ the subject	Either collect like terms on each side or take out a common factor of $\frac{dy}{dx}$
			OR $-3x^{2}\frac{dy}{dx} + 2y\frac{dy}{dx} = 6xy - 3x^{2}$				Must have two terms involving $\frac{dy}{dx}$ and two terms without $\frac{dy}{dx}$
			$(2y-3x^2)\frac{dy}{dx} = 6xy-3x^2$ $\frac{dy}{dx} = \frac{6xy-3x^2}{2y-3x^2}$ A.G.	A1 [4]	2.1	Obtain correct $\frac{dy}{dx}$	Obtain given answer having collected like terms on either side and taken out a common factor (possibly with both steps being done in one go)
	(b)		$\frac{dy}{dy} - 9$	B1	1.1	Obtain gradient of 9	Could be implied by $-\frac{1}{9}$
			$dx = -\frac{1}{9}$ $m' = -\frac{1}{9}$	B1FT	1.1	Correct gradient of normal	FT their m
			$y-2 = -\frac{1}{9}(x-1)$	M1	1.1 a	Attempt equation of normal	Using (1, 2) and their normal gradient (M0 if using gradient of tangent) Gradient must be numerical
			x + 9y = 19	A1 [4]	1.1	Obtain correct three term equation	Any correct equiv