Question		n	Answer	Marks	AO	Guidance	
8	(a)		$\frac{\mathrm{d}x}{\mathrm{d}t} = k\sqrt{x}$	B1*	3.3	Set up a correct differential equation	Allow $-k$
			$-0.0032 = k\sqrt{0.64} \text{ so } k = -0.004$ hence $\frac{dx}{dt} = -0.004\sqrt{x}$ A.G.	B1d*	3.3	Obtain correct differential equation www	Or $k = 0.004$ from $-k$ Must use -0.0032 when finding k B0 if $k = 0.004$, even if then comment about 'decreasing' and sign changed
	(b)		$\int -0.004 dt = \int x^{-\frac{1}{2}} dx$	M1*	1.1a	Separate variables and attempt integration	Condone dx, dt and/or integral sign not being explicit Could instead invert both sides of equation Increase by 1 in both of their powers
			$-0.004t = 2x^{\frac{1}{2}} + c$	A1	1.1	Correct integral – could still be in terms of k	Condone no + c Any correct equation eg $t = -500\sqrt{x} + c$
			$-0.004 \times 100 = 2\sqrt{0.64} + c$ $c = -2$	M1d*	3.4	Use $t = 100$, $x = 0.64$ to find c	Substitute given values into their general solution and attempt c NB check method carefully for their equation and the position of their c
			$2\sqrt{x} = 2 - 0.004t$ $x = (1 - 0.002t)^2$	A1 [4]	1.1	Correct equation	Any equiv as long as <i>x</i> in terms of <i>t</i> ISW if correct equation subsequently spoilt
	(c)		when $x = 0$, $t = 500$ so tank will be empty after 500	M1 A1	1.1 3.4	Use $x = 0$ to attempt a value for t Units needed	Must be using $x = 0$ in their particular solution, with a non-zero value for c Must come from using a correct equation
			seconds	[2]			Allow 8 mins 20 secs, 8.3 mins or 8.33 mins