Question		n	Answer	Marks	AO	Guidance		
9	(a)		$R^2 = 9 + 49$	M1	1.1a	Attempt correct process to find <i>R</i>		
			$R\cos\alpha = 3$, $R\sin\alpha = 7$ hence $\tan\alpha = \frac{7}{3}$	M1	1.1a	Attempt correct process to find $\tan \alpha$ (or equiv with $\sin \alpha$ or $\cos \alpha$)	M0 for tan $\alpha = \frac{3}{7}$ Allow M1 even if then evaluated in degrees	
			$\sqrt{58}\cos(3x-1.17)$	A1 [3]	1.1	Obtain $\sqrt{58} \cos(3x - 1.17)$	Allow $R = 7.62$, or better α must be in radians If R and α are correct then no need to see them substituted back into the expression	
	(b)		Stretch in the y direction by sf $\sqrt{58}$	B1FT	1.1	Follow through their <i>R</i> (numerical or just ' <i>R</i> ') Given at any point in the sequence of transformations	Allow BOD if no 'scale factor' or equiv ie B1 for 'stretch in y –direction by $\sqrt{58}$ ' Must be 'parallel to y -axis', 'in y direction', ' x -axis invariant' or equiv, so B0 for 'along / in / on / to y -axis', 'parallel to y ' etc	
			Translation in the <i>x</i> direction by 1.17 Stretch in the <i>x</i> direction by sf $\frac{1}{3}$	M1	3.1a	Translation by \pm their α and stretch by (sf) 3 or $\frac{1}{3}$, in either order, both in the x direction	Allow informal language for this mark eg 'shift', 'move', 'compression', 'squash' Allow translation by $\pm \frac{1}{3}$ (their α)	
				A1FT	1.1	Translation by their α (numerical, inc in degrees, or just ' α ')	soi to be in the positive <i>x</i> -direction Must use correct language (see B1FT)	
				A1	2.5	Stretch by sf $\frac{1}{3}$	A0A1 is possible For A1A1 stretch must follow translation, unless using $\frac{1}{3}$ (their α)	
				[4]			Must use correct language (see B1FT) Must mention 'scale factor', 'factor' or 'sf'	

Question		n	Answer	Marks	AO	Guidance	
	(c)		greatest value is √58	B1FT	3.1a	FT their R	R must be numerical
							Allow no method shown
			when $x = 0.389$	B1	1.1	Obtain 0.389	Must be in radians
							'Determine' so some method needed
							eg $3x - 1.17 = 0$ oe (minimum of $x = \frac{1.17}{3}$)
							Allow 0.39
				[2]			
	(d)		least value is $-\sqrt{58}$	B1FT	3.1a	FT their R	R must be numerical
							Allow no method shown
			when $x = 1.44$	B1	1.1	Obtain 1.44	Must be in radians
							'Determine' so some method needed
							eg $3x - 1.17 = \pi$, or equiv
				[2]			