Question		on	Answer	Marks	AO	Guidance	
11	(a)		$\int 1.\ln(x-4)dx$ so $u = \ln(x-4)$ and $v' = 1$	M1	1.1 a	Attempt integration by parts, with correct parts	<i>u</i> and <i>v'</i> correctly allocated and correct formula used M0 if $v = x - 4$ from $v' = 1$
			$x\ln x-4 - \int \frac{x}{x-4} \mathrm{d}x$	A1	1.1	Correct expression	Allow brackets not modulus Allow $x \times \frac{1}{x-4}$, even if subsequently spoilt
			$\int \frac{x}{x-4} dx = \int 1 + \frac{4}{x-4} dx$	M1	3.1a	Attempt to deal with improper fraction	Allow sign error ie $1 - \frac{4}{x-4}$ Could use substitution of $u = x - 4$ but must get as far as a proper fraction (ie $1 \pm 4u^{-1}$) Do not need to actually integrate for M1
			$= x + 4\ln\left x - 4\right $	A1	1.1	Correct integration of fraction	Allow brackets not modulus Using a substitution gives $x - 4 + 4\ln x - 4 $; must be in terms of x and not u for A1
			$\int \ln(x-4) dx$ = $x \ln x-4 - x - 4 \ln x-4 + c$ = $(x-4) \ln x-4 - x + c$ A.G.	A1	2.4	Show given answer with no errors seen	Modulus required in final answer, as well as $+ c$ Can go from penultimate line in MS to given answer with no further detail needed Answer from using substitution will need to justify changing $c \ge c + 4$ is a constant hence c' is also a constant
				[5]			NB differentiating given answer is 0/5

Question		on	Answer	Marks	AO	Guidance		
							OR B1 – use substitution of $v = x - 4$, with $\frac{dv}{dx} = 1$ seen, to obtain $\int \ln v dv$ if B0 as it is not explicit then next 4 marks are still available M1 – attempt integration by parts on $\int \ln v dv$, using correct parts and correct formula A1 – obtain $v \ln v - v$ (allow no modulus) A1 – obtain $(x - 4) \ln x - 4 - (x - 4)$ A1 – obtain given answer, including modulus sign, and with justification for their <i>c</i> becoming <i>c'</i>	
	(b)	S	State $x = 4$	B1 [1]	2.2a		Must be an equation	
	(c)		$\int_{5}^{7} \ln(x-4) dx + \int_{4.5}^{5} \ln(x-4) dx$	M1	3.1a	Attempt sum of absolute areas	Or integral $\int_{5}^{7} \ln(x-4) dx - \int_{4.5}^{5} \ln(x-4) dx$	
		3	$\ln 3 - 2 \int (\frac{1}{2} \ln \frac{1}{2} + \frac{1}{2})$ $\ln 3 - 2 - \frac{1}{2} \ln 2 + \frac{1}{2}$	M1	3.1a	Attempt to rearrange to required form	Use $\ln \frac{1}{2} = -\ln 2$ and gather like terms Could follow M0 Allow M1 (implied) for $3\ln 3 + 0.5\ln 2 - 2.5$, even if $-0.5\ln 0.5$ not seen first	
		3	$\ln 3 - \frac{1}{2} \ln 2 - \frac{3}{2}$	A1	1.1	Obtain $3\ln 3 - \frac{1}{2}\ln 2 - \frac{3}{2}$	Or $3\ln 3 - 0.5\ln 2 - 1.5$	