Question		on	Answer	Marks	AO	Guidance	
3	(a)		$\pi r^2 h = 16000\pi$	B 1	3.1b	Correct equation for volume seen or	<i>h</i> likely to be used, but could be
						used	other variable
			$A = 2\pi r^2 + 2\pi rh$	B 1	3.1b	Correct expression for surface area seen	Two terms may be seen at separate
							stages of the proof
							If alternative formula used eg
							$2\pi r^2 + 2Vr^{-1}$ then this must be
							clearly derived
							Allow BOD for
							$2\pi r^2 + 2\pi r \times 16000 r^{-2}$ as long as h
							seen explicitly in terms of <i>r</i> first
			$=2\pi r^{2}+2\pi r\times 16000r^{-2}$	M1	1.1a	Eliminate <i>h</i> from expression for surface	Allow if just attempt at curved
						area	surface area
			$=2\pi r^2 + 32000\pi r^{-1}$ A.G.	A1	1.1	Obtain given answer	If $2\pi r^2$ is first seen in the final
							answer then it must be justified eg
							'plus two ends', otherwise max
							B1B0M1A0
				[4]			

Question	Answer	Marks	AO	Guidance	
(b)	$\frac{\mathrm{d}A}{\mathrm{d}r} = 4\pi r - 32000\pi r^{-2}$	M1	1.1a	Attempt differentiation	Both powers decrease by 1
	$4\pi r - 32000\pi r^{-2} = 0$ $r^{3} = 8000$	M1	3.1b	Equate derivative to 0 and attempt to solve for r (or h)	$-32000\pi h^{-2} + \pi\sqrt{16000}h^{-\frac{1}{2}}$
	r = 20	A1	1.1	Obtain correct r, units not needed	$h^{\frac{3}{2}} = \sqrt{64000}$
	Surface area = 2400π cm ² / 7540 cm ²	A1	1.1	Obtain correct A, units not needed	Allow exact or decimal (3sf or better)
	$\frac{d^2 A}{dr^2} = 4\pi + 64000\pi r^{-3}$ when $r = 20$, $\frac{d^2 A}{dr^2} = 12\pi$ (or 37.7)	M1	2.1	Attempt method to justify minimum, including substitution or consideration of sign	Could also test first derivative, or A , on both sides of $r = 20$
	$\frac{d^2 A}{dr^2} > 0$, hence minimum	A1	2.2a	Correct conclusion, with justification, from correct working	If second derivative is evaluated, it must be correct (condone truncated decimal of 37.6)
		[6]			