Question		on	Answer	Marks	AO	Guidance	
5	(a)		$\overrightarrow{BQ} = \frac{1}{2} (\mathbf{a} - \mathbf{b})$	B1	1.1a	Correct \overrightarrow{BQ} or \overrightarrow{QB}	Or any correct vector involving Q ,
			$\overrightarrow{PQ} = \frac{1}{4}\mathbf{b} + \frac{1}{2}(\mathbf{a} - \mathbf{b}) = \frac{1}{2}\mathbf{a} - \frac{1}{4}\mathbf{b}$	B1	1.1	Correct \overrightarrow{PQ}	but must be clear which vector it is Must be simplified to two terms
							SC Allow B1 if correct unsimplified PQ is seen but
							individual vectors not explicit
				[2]			
	(b)		\overrightarrow{PR} has the same direction as \overrightarrow{PQ} , so	B1	2.4	Explain parallel (or collinear) vectors	Allow 'gradient' for 'direction', or
			vector must be a multiple of \overrightarrow{PQ}			have direction vectors that are multiples of each other	'they are on the same straight line', but must state or use 'multiple'
			So $\overrightarrow{PR} = \lambda(\frac{1}{2}\mathbf{a} - \frac{1}{4}\mathbf{b}) = \frac{1}{4}\lambda(2\mathbf{a} - \mathbf{b})$	B1	2.1	Show given answer convincingly	Clear detail of scaling factor
			$= k (2\mathbf{a} - \mathbf{b}) \mathbf{A.G.}$	[2]			
	(c)		$\overrightarrow{AR} = -\mathbf{a} + \frac{3}{4}\mathbf{b} + k\left(2\mathbf{a} - \mathbf{b}\right)$	B1	1.1	Correct expression for \overline{AR} (or \overline{OR}), in terms of k	Could use <i>A</i> to <i>Q</i> to <i>R</i> (condone if <i>k</i> still used)
			AD multiple of a cultur 3 h. / h. O	M1	3.1a	Use coefficient of $\mathbf{b} = 0$	Must be used in \overrightarrow{AR} or \overrightarrow{OR}
			\overline{AR} multiple of a only, $\frac{3}{4}$ b – k b = 0				
			Obtain $k = \frac{3}{4}$	A1	1.1	Obtain correct value for k	May get different value for their k
			ratio $OA:AR=2:1$	A1	1.1	Correct ratio (allow 1: $\frac{1}{2}$) oe	Answer only is 0, as question says 'determine'
				[4]			determine