Question		on	Answer	Marks	AO	Guidance	
6	(a)		$\log_{10}S = \log_{10}(ab^t)$	M1	2.1	Attempt to show reduction to linear	Introduce logs on both sides, and
			$\log_{10}S = \log_{10}a + \log_{10}b^t$			form	correctly split to the sum of two
							terms
			$\log_{10}S = t\log_{10}b + \log_{10}a$	A1	2.1	Obtain correct equation	Condone no base; any bases seen
							must be 10
							A0 for $\log_{10}bt$ unless previously
							seen as $t \log_{10} b$
			which is of the form $Y = mX + c$	A1	2.4	Link to equation of straight line	Base of 10 must now be explicit
							throughout
							Could instead refer to a linear
							relationship
				[3]			
	(b)		$\log_{10}a = 0.583 \implies a = 10^{0.583} = 3.8$	B 1	1.1	Obtain $a = 3.8$, or better, from either	Must clearly be value for <i>a</i>
						eqn	
			$\log_{10}b = 0.146 \implies b = 10^{0.146} = 1.4$	B1	1.1	Obtain $b = 1.4$, or better, from either	Must clearly be value for <i>b</i>
						eqn	
				[2]			
	(c)		$3.8 \times 1.4^{t} = 200$	M1	3.1 a	Link their model to 200 and attempt to	Or use linear equation and attempt
			$1.4^t = 52.63$			solve for <i>t</i>	to solve for <i>t</i>
							Must use correct solution method
							Allow M1 if using $S =$
							200,000,000
							Allow if their <i>a</i> and <i>b</i> transposed
			t = 11.8	A1	1.1	Obtain $t = 11.8$, or better, www	Condone 11.7 as truncated value
						(allow $t = 12$)	for <i>t</i>
			so year is 2027	A1FT	3.2a	FT their value for t	Answer in context, so not just '12
							years later'
							FT on 2015 + integer number of
							years, from rounding up their t
				[3]			

