8	(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{2x}\right) = 2\mathrm{e}^{2x}$	B1	1.1	Seen anywhere in solution	
		$6xe^{2x} + (2+3x^2)(2e^{2x})$	M1	1.1a	Attempt product rule	Could expand first
		$e^{2x}(6x^2+6x+4)$	A1	1.1	Obtain any fully correct expression	
			[3]			
	(b)	$e^{2x} > 0$ for all x	B1	2.1		B0 if clearly considering $f(x)$ or
						f''(x) and not $f'(x)$
		$6x^2 + 6x + 4 = 6\left(x + \frac{1}{2}\right)^2 + \frac{5}{2}$	M1	2.1	Attempt to show that their 3 term quadratic factor is > 0 for all x	Complete the square or consider discriminant
		minimum value is $\frac{5}{2}$ so > 0 for all x				Could be multiple or fraction of
		2				their quadratic

Question		ion	Answer	Marks	AO	Guidance	
				A1	2.4	Full justification that quadratic factor is	Show minimum point > 0 , or show
						always positive	that quadratic is always positive
			Gradient $e^{2x}(6x^2 + 6x + 4) > 0$ for all <i>x</i> so	A1	2.4	Justify increasing function as $f'(x) > 0$	
			it is increasing for all x			for all <i>x</i>	
				[4]			OR
							B1 $e^{2x} \neq 0$
							M1 Show that quadratic $\neq 0$
							(detail required)
							M1 Show gradient is positive at
							one point, as part of attempt
							to show $f'(x) \neq 0$
							A1 Conclude that gradient must
							hence be positive for all x, so
							increasing function