

Question		on	Answer	Marks	AO	Guidance	
			0 = 1.5a + 2	M1	3.1 a	Attempt to find value of a at their x	eg
						intersection	Use equation of line to find a
							Use gradient of line to find a
							Use a point of intersection of the
							two lines = their 1.5
							Equate two points of intersection
							and solve for <i>a</i>
							Square both sides and link
							discriminant to 0
			$a = -\frac{4}{3}$	A1	1.1	Obtain $-\frac{4}{3}$ (condone any inequality	Question is 'determine' so method
						sign, an equals sign or no sign)	required for this value of a
			$-\frac{4}{3} < a < 2$	A1	1.1	Correct final inequality	Formal set notation not required
			3 ~ 4 ~ 2	5.43		1 5	1
				[4]			
		(ii)	2x - 3 = ax + 2	B1	1.1	Correct point of intersection – allow	OR M1 – square both sides and
			$x = \frac{5}{2}$			any exact equiv	attempt to solve – as far as
			2-a				substituting into quadratic formula
							Al Al for each root
			3 - 2x = ax + 2	M1	1.1a	Attempt to solve linear equation with $2x$	Method may be seen in (i), only
			(2+a)x = 1			and ax of different signs	credit if answers seen in (ii)
			$x = \frac{1}{1}$	A1	1.1	Correct point of intersection – allow	Max of 2 out of 3 if additional
			2+a			any exact equiv	roots as well.
				[3]			