Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { M1 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AO } \\ \hline 1.1 \mathrm{a} \\ \hline \end{array}$	Guidance	
(a)	(i)	$x^{2}+(m x+2)^{2}-10 x-14(m x+2)+64=$ 0 $\begin{aligned} & x^{2}+m^{2} x^{2}+4 m x+4-10 x-14 m x-28+ \\ & 0 \\ & \left(m^{2}+1\right) x^{2}-10(m+1) x+40=0 \end{aligned}$ A.G.	A1	$1.1 \mathrm{a}$ 1.1	Substitute eqn of tangent into eqn of circle Expand and tidy to given answer, including ' $=0$ ' in final answer	Could work backwards, eliminating m to obtain equation of circle AG so unsimplified expansion needs to be seen
	(ii)	$\begin{aligned} & 100(m+1)^{2}-160\left(m^{2}+1\right)=0 \\ & 60 m^{2}-200 m+60=0 \\ & (3 m-1)(m-3)=0 \\ & m=3, m=\frac{1}{3} \\ & y=3 x+2 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { M1d* } \\ \text { A1 } \\ \\ {[4]} \end{gathered}$	$\begin{gathered} \hline \text { 3.1a } \\ 1.1 \\ \text { 1.1a } \\ 1.1 \end{gathered}$	Use $b^{2}-4 a c=0$ Obtain correct equation Attempt to solve quadratic Obtain correct equation	M1 only awarded when ' $=0$ ' soi Any correct 3 term equation DR so method for solving the quadratic must be shown SC B1for correct equation if roots not justified A0 if second equation also given OR (for first 2 marks) M1 - Attempt two equations in m and x (eg use lengths and gradients) and eliminate one variable A1 - correct quadratic in m or x
(b)		$\begin{aligned} & \text { radius }=\sqrt{10}, P C=5 \sqrt{2}, \\ & P A=P B=2 \sqrt{10}, A B=4 \sqrt{2} \\ & \tan \left(\frac{1}{2} A P B\right)=\frac{1}{2} \\ & \tan A P B=\frac{1}{1-\frac{1}{4}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \end{aligned}$	$\begin{gathered} 3.1 \mathrm{a} \\ 1.1 \\ 3.1 \mathrm{a} \end{gathered}$	Attempt (at least 2) useful lengths Obtain a correct related trig ratio Attempt tan APB	NB points of intersection are $(2,8)$ and (6, 4) $\cos A P B=\frac{3}{5}$, from cosine rule DR so need to see use of identity or relevant triangle to find $\tan A P B$

Question	Answer	Marks	AO	Guidance	
	$\tan A P B=\frac{4}{3}$	A1 [4]	1.1	Obtain $\frac{4}{3}$	From explicit, exact, working
					OR M2 - attempt $\frac{ \pm m \pm n}{1 \pm m n}$ with their values for m and n A1FT - correct $\frac{m-n}{1+m n}$ for their values of m and n A1 - obtain $\tan A P B=\frac{4}{3}$

