

Question		Answer	Marks	AO	Guidance	
(a)	(i)	$x^{2} + (mx + 2)^{2} - 10x - 14(mx + 2) + 64 =$	M1	1.1a	Substitute eqn of tangent into eqn of	Could work backwards,
		0			circle	eliminating <i>m</i> to obtain equation of
						circle
		$x^2 + m^2 x^2 + 4mx + 4 - 10x - 14mx - 28 +$	A1	1.1	Expand and tidy to given answer,	AG so unsimplified expansion
		64 =			including '= 0' in final answer	needs to be seen
		0				
		$(m^2 + 1)x^2 - 10(m + 1)x + 40 = 0$				
		A.G.	[0]			
	(**)		[2]	2.1	H 12 4 0	
	(11)	$100(m+1)^{2} - 160(m^{2}+1) = 0$	MI*	3.1a	Use $b^2 - 4ac = 0$	M1 only awarded when $= 0^{\circ}$ sol
		$60m^2 - 200m + 60 = 0$	AI M1J*	1.1 1.1	Obtain correct equation	Any correct 3 term equation
		(3m-1)(m-3) = 0	MIQ*	1.1a	Attempt to solve quadratic	DR so method for solving the
		$m = 3, m = \frac{1}{3}$				quadratic must be shown
		y = 3x + 2	A1	1.1	Obtain correct equation	SC B1for correct equation if roots
						not justified
						A0 if second equation also given
			[4]			
						OR (for first 2 marks)
						MI - Attempt two equations in m
						and x (eg use lengths and
						gradients) and eliminate one
						Variable
(b)			M1	3.10	Attempt (at least 2) useful lengths	AI = correct quadratic III m of x
	,	radius = $\sqrt{10}$, $PC = 5\sqrt{2}$,	IVII	J.1a	Attempt (at least 2) useful lengths	and $(6, 4)$
		$PA=PB=2\sqrt{10}$, $AB=4\sqrt{2}$				
		$\tan\left(\frac{1}{2}APB\right) = \frac{1}{2}$	A1	1.1	Obtain a correct related trig ratio	$\cos APB = \frac{3}{5}$, from cosine rule
		ton ADP 1	M1	3.1 a	Attempt tan APB	DR so need to see use of identity
		$\tan AFD = \frac{1}{1 - \frac{1}{4}}$				or relevant triangle to find tan APB
1	I		I	I	l	Ι

Question		on	Answer	Marks	AO	Guidance	
			$\tan APB = \frac{4}{3}$	A1	1.1	Obtain $\frac{4}{3}$	From explicit, exact, working
				[4]		-	
							OR
							M2 – attempt $\frac{\pm m \pm n}{1 \pm mn}$ with their
							values for <i>m</i> and <i>n</i>
							A1FT – correct $\frac{m-n}{1+mn}$ for their
							values of <i>m</i> and <i>n</i>
							A1 – obtain tan $APB = \frac{4}{3}$