$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\int \frac{1}{y} \mathrm{~d} y=\int \frac{20 x-35}{2 x^{3}-3 x^{2}-11 x+6} \mathrm{~d} x$	M1	1.1	Separate variables	Correct process to deal with algebraic fractions, with BOD on integral notation
	$\begin{aligned} \mathrm{f}(x) & =2 x^{3}-3 x^{2}-11 x+6 \\ & =(x-3)\left(2 x^{2}+3 x-2\right) \end{aligned}$	M1	3.1a	Attempt to factorise cubic	Possibly BC, so correct factorised cubic implies M1A1 If incorrect factorised cubic then method must be seen for M1 Allow M1A0 for $(x-3)(x+2)(x-0.5)$
	$=(x-3)(x+2)(2 x-1)$	A1	1.1	Correct factorised cubic	
	$\frac{20 x-35}{2 x^{3}-3 x^{2}-11 x+6}=\frac{A}{x+2}+\frac{B}{x-3}+\frac{C}{2 x-1}$	M1	1.1a	Attempt partial fractions, using their 3 linear factors	Must be correct structure, attempting at least one numerator
	$3+\frac{1}{x-3}+\frac{4}{2 x-1}$	A1	1.1	Obtain any one correct fraction www	Possibly implied by eg $A=-3$
	$x+2$ x-3 $+\frac{4}{2 x-1}$	A1	1.1	Obtain fully correct partial fractions	Could be implied by $A=-3$ etc, if subsequent slip when writing out partial fractions
	$\int \frac{1}{y} \mathrm{~d} y=\ln \|y\|$	B1	1.1	Correct integration of $\frac{1}{y}$	Condone no modulus sign

Question		Answer	Marks	AO	Guidance	
		$-3 \ln \|x+2\|+\ln \|x-3\|+2 \ln \|2 x-1\|+\ln A$	A1FT	$\mathbf{1 . 1}$	Obtain correct integral following their 3 linear partial fractions	Condone no constant of integration Condone brackets and not modulus FT from point that partial fractions were credited, and not on subsequent errors
		$y=\frac{A(x-3)(2 x-1)^{2}}{(x+2)^{3}}$	A1	$\mathbf{1 . 1}$	Obtain correct equation	Any correct form not involving ln May be e^{c} not A, but A0 if fraction $+c$ Could have $(x+2)^{-3}$ in a product

