1 2		$\int \frac{1}{y} dy = \int \frac{20x - 35}{2x^3 - 3x^2 - 11x + 6} dx$	M1	1.1	Separate variables	Correct process to deal with algebraic fractions, with BOD on integral notation
		$f(x) = 2x^{3} - 3x^{2} - 11x + 6$ = (x - 3)(2x ² + 3x - 2)	M1	3.1a	Attempt to factorise cubic	Possibly BC , so correct factorised cubic implies M1A1 If incorrect factorised cubic then method must be seen for M1 Allow M1A0 for (x - 3)(x + 2)(x - 0.5)
		=(x-3)(x+2)(2x-1)	A1	1.1	Correct factorised cubic	
		$\frac{20x-35}{2x^3-3x^2-11x+6} = \frac{A}{x+2} + \frac{B}{x-3} + \frac{C}{2x-1}$	M1	1.1 a	Attempt partial fractions, using their 3 linear factors	Must be correct structure, attempting at least one numerator
		3 1 4	A1	1.1	Obtain any one correct fraction www	Possibly implied by eg $A = -3$
		$= -\frac{3}{x+2} + \frac{1}{x-3} + \frac{4}{2x-1}$	A1	1.1	Obtain fully correct partial fractions	Could be implied by $A = -3$ etc, if subsequent slip when writing out partial fractions
		$\int \frac{1}{y} dy = \ln y $	B1	1.1	Correct integration of $\frac{1}{y}$	Condone no modulus sign

Question		on	Answer	Marks	AO	Guidance	
			$-3\ln x+2 + \ln x-3 + 2\ln 2x-1 + \ln A$	A1FT	1.1	Obtain correct integral following their 3	Condone no constant of integration
						linear partial fractions	Condone brackets and not modulus
							FT from point that partial fractions
							were credited, and not on
							subsequent errors
			$A(x-3)(2x-1)^2$	A1	1.1	Obtain correct equation	Any correct form not involving ln
			$y = \frac{A(x-3)(2x-1)^2}{(x+2)^3}$				May be e^c not A, but A0 if fraction
			(37 + 2)				+c
							Could have $(x + 2)^{-3}$ in a product
				[9]			