11	(a)	2udu = 2xdx	B1	1.1a	Any correct expression linking d <i>u</i> and d <i>x</i>	Could be $du = \frac{1}{2} 2x (x^2 + 3)^{-\frac{1}{2}} dx$ or equiv
		$\int \frac{4u(u^2-3)}{\sqrt{u^2}} \mathrm{d}u$	M1*	2.1	Attempt to rewrite integrand in terms of <i>u</i>	in terms of <i>u</i> Not just $dx = du$, unless from a clear attempt at du eg using $u = x + \sqrt{3}$
		$\int (4u^2 - 12) \mathrm{d}u$	A1	1.1	Obtain correct integrand	Allow unsimplified expression
		$\frac{4}{3}u^3 - 12u(+c)$	M1dep *	1.1	Attempt integration	Simplify to form that can be integrated, then increase all powers by 1
		$\frac{4}{3}u(u^2-9)+c=\frac{4}{3}(x^2-6)\sqrt{x^2+3}+c$ A.G.	A1	2.1	Obtain given answer, with at least one intermediate step seen	Need evidence of common factor (in terms of u or x) being taken out Condone omission of $+c$
			[5]			
	(b)	DR $\frac{4}{3}\left(\left(-5\times2\right)-\left(-6\times\sqrt{3}\right)\right)$	M1	2.1	Attempt to use limits $x = 0$ and $x = 1$, or $u = \sqrt{3}$ and $u = 2$ in integral in terms of u	Correct order and subtraction Attempt to use both limits in their integral to give two terms DR so just stating decimal area is M0 Either using answer from (a) or their
		$=\frac{4}{3}\left(6\sqrt{3}-10\right)$ or 0.523	A1	1.1	Obtain correct area under curve	Accept exact (inc unsimplified) or decimal Using +2 gives $\frac{4}{3}(4\sqrt{2}-3\sqrt{3})$ or 0.614
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12x^2\left(x^2+3\right)^{\frac{1}{2}} - 4x^3 \cdot 2x \cdot \frac{1}{2}\left(x^2+3\right)^{-\frac{1}{2}}}{x^2+3}$	M1	3.1a	Attempt derivative using the quotient rule	Or equiv with product rule Need difference of two terms in numerator, at least one term correct, but allow subtraction in incorrect order Using either +2 or +3 equation

Question	Answer	Marks	AO	Guidance	
		A1	1.1	Obtain correct, unsimplified,	With either $+2$ or $+3$
				derivative	
	at $x = 1$, $m = \frac{11}{2}$ hence $m' = -\frac{2}{11}$	M1	2.1	Attempt gradient of normal at $x = 1$	Substitute $x = 1$ and use negative
					reciprocal
					Using +2 gives $m' = -\frac{3}{32}\sqrt{3}$
					Can be with <i>m</i> found BC
	$y-2 = -\frac{2}{11}(x-1)$	M1	1.1	Attempt to find point of intersection	Attempt equation of normal with their
	when $y = 0, x = 12$			of normal with <i>x</i> -axis	gradient and either (1, 2) or $\left(1, \frac{4}{3}\sqrt{3}\right)$, and
					then use $y = 0$ to find x intersection
	area = $8\sqrt{3} - \frac{40}{2} + 11$	A1	3.1 a	Obtain correct area	From combining a correct area under curve
	$=8\sqrt{3}-\frac{7}{3}$			Allow any exact (including	and a correct area of triangle (either 11 or
				unsimplified) or decimal equivalent	$\frac{64}{9}\sqrt{3}$), even if inconsistent
					Can still get A1 following M0 for area
					under curve BC and/or <i>m</i> found BC
		[7]			