12	(a)	(i)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k$	B1	3.3	Allow $\frac{\mathrm{d}\theta}{\mathrm{d}t} = k$ or $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -3.5$	Both sides of differential equation required
				[1]			
		(ii)	$\theta = -3.5t + c$	M1	3.4	Obtain equation of the form	Not dependent on correct differential
						$\theta = \pm 3.5t + c$, where <i>c</i> could already	equation in (i)
						be numerical and possibly incorrect	
			$\theta = 160 - 3.5t$	A1	1.1	Obtain correct equation	
				[2]			Alt method
							For M1, integrate to get $\theta = kt + c$, then
							use (0, 160) and (10, 125) to attempt <i>c</i> and
							hence k

Question		n	Answer	Marks	AO	Guidance	
		(iii)	The model would predict that the temperature	B1	3.5b	Any sensible comment	Cooling rate unlikely to be linear
			would fall below room temperature, and				Identify that limit (ie room temperature)
			eventually below freezing point				will be reached
				[1]			

(b)	(i)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta - 20)$	B1	3.3	Allow $\frac{\mathrm{d}\theta}{\mathrm{d}t} = k(\theta - 20)$	Both sides of differential equation required ISW if $k = -3.5$ used once correct equation seen (but B0 if only ever seen with -3.5)
			[1]			
	(ii)	$\int \frac{1}{\theta - 20} d\theta = \int -k dt$	M1	3.1a	Separate variables (or invert each side) and attempt integration	Allow M1 for integration of a differential equation not of this form eg $\frac{d\theta}{dt} = \frac{-k}{(\theta - 20)}$, as long as <i>t</i> and/or θ are involved – must be attempt at correct rearrangement of their diff eqn

Question	Answer	Marks	AO	Guidance		
	$\ln\left \theta - 20\right = -kt + c$	A1	1.1	Obtain correct integral	Or $\ln \left \theta - 20 \right = kt + c$	
	$\ln 140 = c$	M1	3.4	Use $t = 0$, $\theta = 160$ in an equation involving both k and c	Condone brackets not modulus Equation must be from integration attempt, but could follow M0 As far as numerical c or k Using both pairs of values as limits in a definite integral is M2	
	$ \ln 105 = -10k + \ln 140 \\ k = -0.1\ln 0.75 $	M1	1.1 a	Use $t = 10$, $\theta = 125$ in an equation involving both k and c (c possibly now numerical)	As far as numerical c and k	
	$\ln \theta - 20 = (0.1\ln 0.75)t + \ln 140$ $\theta - 20 = e^{(0.1\ln 0.75)t + \ln 140} = 140e^{(0.1\ln 0.75)t}$	M1	1.1	Attempt to make θ the subject	As far as correctly removing logs Equation must now be of the correct form ie $\ln a\theta + b = ct + d$	
	$\theta = 20 + 140e^{(01\ln 075)t}$	A1 [6]	1.1	Obtain correct equation Allow – 0.0288 (or better) for 0.11n0.75 and/or 4.94 (or better) for 1n140	Could still be in terms of <i>c</i> and <i>k</i> to give eg $\theta = Ae^{kt} + 20$ Allow $\theta = 20 + e^{(0.1\ln 0.75)t + \ln 140}$ Could see $\theta = 140(0.75)^{0.1t} + 20$	
(c)	$25 = 160 - 3.5t \implies t = 38.6 \text{ mins}$	M1	3.4	Use $\theta = 25$ in both of their equations	As far as two numerical values for <i>t</i>	
	$\ln 5 = (0.1\ln 0.75)t + \ln 140 \implies t = 115.8 \text{ mins}$ 77 minutes	A1 [2]	3.4	to find values for <i>t</i> Obtain 77 minutes	Accept any answer rounding to 77, with no errors seen	