2	(a)		eg $1 > -2$, but $1^2 < (-2)^2$ as $1 < 4$	B1	2.1	Any correct counterexample, and	Initial inequality soi and then
						contradiction identified	contradiction eg $-3 > -4$ but $9 < 16$ (or
							9 ≯ 16)
				[1]			
2	(b)	(i)	eg $\sin 150^\circ = 0.5$ as well	B1	2.3	Any correct statement	Identifies that $\sin x = 0.5$ could give
							values of x other than 30°
							Either specific example or general
							statement eg 'many to one' function
				[1]			
2	(b)	(ii)	$\sin x^{\circ} = 0.5 \Leftarrow x^{\circ} = 30^{\circ}$	B1	2.5	Any correct relationship	If attempting to write general solution
							then must be fully correct eg $x = 30^{\circ} +$
							$360n^{\circ}, x = 150^{\circ} + 360n^{\circ}$
							Condone \leftarrow instead of \Leftarrow
				[1]			
2	(c)		(4n) + (4n + 4) + (4n + 8) + (4n + 12), where	B1*	2.1	Four consecutive multiples of 4	Allow BOD if <i>n</i> not explicitly stated to
			<i>n</i> is an integer			written correctly in terms of <i>n</i> , or	be an integer
						any other variable	Sufficient to just list the 4 terms, rather
							than as a sum
							Not necessarily starting on 4n
							Could also define <i>k</i> as a multiple of 4
							and then have $k, k + 4$ etc
			= 16n + 24	M1	2.1	Correctly sum terms, and	Or sum and then consider each term
			= 8(2n+3)	dep*		correctly take out common factor	separately
						of 8	Could be a different factor if using k

Question	Answer	Mark s	AO	Guidance	
	2n+3 is an integer, so $8(2n+3)$ is a multiple of 8	A1 [3]	2.4	Conclude appropriately	Allow BOD if $2n + 3$ not explicitly stated to be an integer If using k expect $8(0.5k + 3)$ then justify 0.5k as an integer, or $4(k + 6)$ then justify $k + 6$ is a multiple of 2