3	(a)	DR				
	(u)	$2x^2 - 8x + 6 = 0$ $x^2 - 4x + 3 = 0$	M1	1.1	Equate, and rearrange to three term quadratic	Attempt to gather like terms, but not necessarily on same side of equation Condone no $= 0$
		(x-1)(x-3) = 0	M1	1.1	Attempt to solve quadratic	If factorising then expansion should give x^2 and one other term correct Quadratic formula should be correct – allow one slip when substituting as long as general formula already seen as correct Completing the square needs to go as far as $x - p = \pm \sqrt{q}$
		x = 1, x = 3	A1	1.1	Obtain both correct x values	Or one correct (x, y) coordinate
		(1, 0) and (3, 4)	A1	1.1	Obtain both correct pairs of coordinates	following a correct factorisation oe Allow as eg $x = 1$, $y = 0$ as long as pairings are clear

Question		Answer	Mark s	AO	Guidance	
			[4]			SC If no method shown for solving quadratic then allow M1 for obtaining 3 term quadratic A1 for $x = 1$, $x = 3$ A1 for (1, 0) and (3, 4) SC If no method at all shown then allow B1 for both (1, 0) and (3, 4)
3	(b)		M1	1.1	Attempt graph of $y = 2x - 2$, with positive gradient and negative intercept	No need for line to actually intersect with negative <i>y</i> -axis as long as it goes beneath positive <i>x</i> -axis
			A1 [2]	1.1	Graph of $y = 2x - 2$ passing through both points of intersection of the two quadratic graphs	Must pass through both points

Question		1	Answer	Mark s	AO	Guidance	
3	(C)		R	B1FT	2.2a	Correct region labelled with R, or otherwise clearly identified	FT any straight line that splits the overlap area into two finite regions, with the lower region identified Allow for straight line with negative gradient as well, but not $x = k$
		- Y.		[1]			