5	(a)	(i)	4 units in the negative <i>x</i> -direction	M1	1.1	Indicate horizontal translation (in	(4)
						either direction) in some way	B1 for $\begin{bmatrix} 0 \end{bmatrix}$
				A1	2.5	with magnitude of 4 ('units' not required) or 4 in negative <i>x</i> -direction	Condone informal language as long as intent is clear eg 'left' (or even 'right', as either direction allowed) M0 if ambiguous eg 'in' or 'on' the x- axis B2 for $\begin{pmatrix} -4 \\ -4 \end{pmatrix}$
				[2]		Correct language needed	Must now be correct language so $A0$ for eg 'along' the <i>x</i> -axis or 'left' Allow 'parallel to the <i>x</i> -axis' or 'horizontal'
				[2]			

Question		n	Answer	Mark	AO	Guidance	
				S			
5	(a)	(ii)	in the y-direction with sf 16	B1	3.1 a	Identify direction - correct	Allow ' <i>x</i> -axis invariant', 'parallel to the
						language needed	y-axis' or 'vertical'
							Condone 'positive' y-direction (as
							given function > 0)
				B1	1.1	or 2^4	'scale factor' or 'factor' needed
							(condone 'stretch' factor)
							Not dep on previous B1, but must have
							indicated vertical stretch in some way,
							including informal language such as
							'upwards'
							Cannot be ambiguous language, such as
							'in', 'on', 'across' the y-axis
				[2]			

5	(b)	DR				
		$\log_2(8x(1-x)) = 1$	M1	1.1 a	Correctly combine two correct	$Or \log_2(8x) = \log_2 \frac{2}{1-x}$
					log terms	Or $3 + \log_2(x(1-x)) = 1$
						$\operatorname{Or} \log_2(4x(1-x)) = 0$
						OR use indices base 2 on both sides (ie
						$8x = 2^{1-\log_2(1-x)}$) and use rules of
						indices to split eg $8x = 2 \times 2^{-\log_2(1-x)}$

Question		ı	Answer	Mark s	AO	G	luidance	
			8x(1-x) = 2	M1	1.1a	Correct method to remove logs	Correctly used on equation of form $\log_2 f(x) = \log_2 g(x)$ or $\log_2 f(x) = k$	
							OR correct method to deal with log term – expect $8x = \frac{2}{1-x}$	
			eg $8x^2 - 8x + 2 = 0$ or $8x(1-x) = 2$ or $8x = \frac{2}{1-x}$	A1	1.1	Any correct equation not involving logarithms	Could still contain brackets and / or fractions	
			<i>x</i> = 0.5	A1	1.1	Obtain $x = 0.5$	A0 if additional solutions	
				[4]			DR so no credit for answer only	